3.8: Analysis from the Perspective of Beats

If the forced undamped oscillator $m u^{\prime \prime}+k u=F_{0} \cos (\omega t)$ is started from rest $\left(u(0)=u^{\prime}(0)=0\right)$, then the coefficients of the homogenous solution are particularly nice.

Recall from my 3.8 review: If $\omega \neq \omega_{0}$, then a particular solution has the form $U(t)=\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)} \cos (\omega t)$ and the general solution is:

$$
u(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)+\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)} \cos (\omega t)
$$

Using $u^{\prime}(0)=0$ implies $c_{2}=0$ and $u(0)=0$ implies $c_{1}=-\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}$. Thus,

$$
u(t)=\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}\left(-\cos \left(\omega_{0} t\right)+\cos (\omega t)\right)
$$

Some useful trig identities ('superposition of trig functions as products'):

$$
\cos (x)-\cos (y)=2 \sin \left(\frac{x+y}{2}\right) \sin \left(\frac{y-x}{2}\right) \quad \text { and } \quad \sin (x)-\sin (y)=2 \cos \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)
$$

Using the first one with $x=\omega t$ and $y=\omega_{0} t$ gives

$$
-\cos \left(\omega_{0} t\right)+\cos (\omega t)=2 \sin \left(\frac{\omega+\omega_{0}}{2} t\right) \sin \left(\frac{\omega-\omega_{0}}{2} t\right)
$$

So the general solution to the starting at rest case can be written as:

$$
u(t)=\frac{2 F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)} \sin \left(\frac{\omega+\omega_{0}}{2} t\right) \sin \left(\frac{\omega-\omega_{0}}{2} t\right)
$$

Note that $\frac{\omega+\omega_{0}}{2}$ is the average frequency and $\frac{\omega-\omega_{0}}{2}$ is half the difference between the frequencies. You will see in the examples on the next page that these are useful numbers if you are trying to graph these functions.

Visualizing Answers involving two waves

Examples:
1.

$$
\begin{aligned}
& \frac{1}{2}(\cos (9 t)-\cos (10 t))=\sin \left(\frac{10+9}{2} t\right) \sin \left(\frac{10-9}{2} t\right)=\sin \left(\frac{19}{2} t\right) \sin \left(\frac{1}{2} t\right)
\end{aligned}
$$

2.

$$
\begin{aligned}
& \frac{1}{2}(\cos (9.5 t)-\cos (10 t))=\sin \left(\frac{10+9.5}{2} t\right) \sin \left(\frac{10-9.5}{2} t\right)=\sin \left(\frac{19.5}{2} t\right) \sin \left(\frac{0.5}{2} t\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
-2 \\
-3 \\
-4 \\
-5 \\
-6
\end{array}
\end{aligned}
$$

Comments and conclusions:
For $m u^{\prime \prime}+k u=F_{0} \cos (\omega t)$ with $u(0)=u^{\prime}(0)=0$, the solution will exhibit beats and it will look like:

$$
u(t)=\frac{2 F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)} \sin \left(\frac{\omega+\omega_{0}}{2} t\right) \sin \left(\frac{\omega-\omega_{0}}{2} t\right) .
$$

Note that as $\omega \rightarrow \omega_{0}$, the size of amplitude of this will increase because $\frac{2 F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}$ will get larger and larger. When $\omega=\omega_{0}$, we call this resonance and you can see the solution for this situation in my other review sheet on 3.8.

