
3.7: Analyzing Mechanical and Electrical Vibrations (Free Vibrations)

This review just discusses analysis of these applications. For the set up, read the 3.7 and 3.8 applications
review. In 3.7 we are considering, ‘free vibrations’ which means there is no forcing. In other words, we
are considering the homogeneous equation with F (t) = 0.

For an object attached to a spring that is not being forced, we found that the displacement from rest,
u(t), at time t satisfies:

mu′′ + γu′ + ku = 0,

where m is the mass, γ is the damping (friction) constant, and k is the spring constant (all these con-
stants are positive).

We will analyze different cases:

Undamped Free Vibrations: (The γ = 0 case)
If we assume there is no friction (or that the friction is small enough to be negligible), then we are
taking γ = 0. In which case we get:

mu′′ + ku = 0.

The roots of mr2 + k = 0 are r = ±i
√
k/m, so the general solution is

u(t) = c1 cos(
√
k/m t) + c2 sin(

√
k/m t).

Using the facts from my review sheet on waves (namely, R =
√
c21 + c22, c1 = R cos(δ), and c2 = R sin(δ)),

we can rewrite this in the form
u(t) = R cos(ω0t− δ),

where ω0 =
√
k/m.

Thus, the solution is a cosine wave with the following properties:

• The natural frequency is ω0 =
√
k/m radians/second.

• The period (or wavelength) is T = 2π
ω0

= 2π
√
m/k seconds/wave

(this is the time from peak-to-peak or valley-to-valley).

• The amplitude is R =
√
c21 + c22, which will depend on initial conditions.

• The phase angle is δ which is the starting angle, which also depends on initial conditions.



Damped Free Vibrations: (The γ > 0 case)
If γ > 0, then we have

mu′′ + γu′ + ku = 0.

The roots of mr2 + γr + k = 0 are r = − γ
2m
± 1

2m

√
γ2 − 4mk. Three different things can happen here:

1. If γ2 − 4km > 0, then there are two real roots that are both negative.
The solution looks like y = c1e

r1t + c2e
r2t.

The condition simplifies to γ > 2
√
km.

In this case we say the systems is overdamped.

2. If γ2 − 4km = 0, then there is one repeated root that is negative.
The solution looks like y = c1e

rt + c2te
rt.

The condition simplifies to γ = 2
√
km.

In this case we say the systems is critically damped.

3. If γ2 − 4km < 0, then there are two complex roots with λ = − γ
2m

and ω = µ =

√
4mk−γ2
2m

.
The solution looks like y = eλt(c1 cos(µt) + c2 sin(µt)).
The condition simplifies to γ < 2

√
km. In this case, we get oscillations where the amplitude goes

to zero. We can analyze the wave part of this last case like we did before.
The expression c1 cos(µt) + c2 sin(µt) can be rewritten as R cos(µt− δ),
where R =

√
c21 + c22, c1 = R cos(δ) and c2 = R sin(δ).

Thus, in this case, the general answer can be written as

u(t) = Reλt cos(µt− δ),

where

• The quasi frequency is µ =

√
4mk−γ2
2m

radians/second.

• The quasi period is T = 2π
µ

= 2π 2m√
4mk−γ2

seconds/wave.

• The amplitude is Reλt, which will always go to zero as t→∞.

Note: If the damping is small, then γ is close to zero. Notice that the formulas above for quasi
frequency and quasi period become the same as the frequency and period when γ = 0. So we get
similar frequencies and periods between small damping and no damping.


