
2.3: Modeling with Differential Equations

Some General Comments:
A mathematical model is an equation or set of equations that mimic the behavior of some phenomenon
under certain assumptions/approximations. Phenomena that contain rates/change can often be modeled
with differential equations.
Disclaimer : In forming a mathematical model, we make various assumptions and simplifications. I am
never going to claim that these models perfectly fit physical reality. But mathematical modeling is a
key component of the following scientific method:

1. We make assumptions (a hypothesis) and form a model.

2. We mathematically analyze the model. (For differential equations, these are the techniques we
are learning this quarter).

3. If the model fits the phenomena well, then we have evidence that the assumptions of the model
might be valid.
If the model fits the phenomena poorly, then we learn that some of our assumptions are invalid
(so we still learn something).

Concerning this course:
I am not expecting you to be an expert in forming mathematical models. For this course and on exams,
I expect that:

1. You understand how to do all the homework! If I give you a problem on the exam that is very
similar to a homework problem, you must be prepared to show your understanding.

2. Be able to translate a basic statement involving rates and language like in the homework. See my
previous posting on applications for practice (and see homework from 1.1, 2.3, 2.5 and throughout
the other assignments).

3. If I give an application on an exam that is completely new and involves language unlike homework,
then I will give you the differential equation (you won’t have to make up a new model). In these
cases, you are expected to be able to read carefully, solve/analyze the equation, and use any given
initial conditions.

Case Studies:
On the following pages, I discuss a few basic applications in more detail. Some of this information is
for your own interest, but it should help you gain a deeper understanding of these models.
Contents:
- Page 2: Mixing Problem Models
- Page 3: Temperature Models
- Page 4: Financial Models
- Page 5: Models of Motion
- Page 6: RLC Circuit Models.



Mixing Problem Models

“The rate of change of a substance in a system equals the rate at which it enters the systems minus the
rate at which it exits the system”.

1. The model :
dy

dt
= Rate IN - Rate OUT.

2. Comment : There is no physical assumption being made (yet).
If a substance is entering a system at 5 g/min and leaving at 3 g/min, then the overall rate of
change within the system is 5− 3 = 2 g/min. That isn’t an assumption, it is a fact!

3. Set Up:

(a) Label/Identify: y = y(t) = ‘amount of substance at time t’. Identify concentrations and
rates INTO the system. Identify concentrations and rates OUT of the system. Identify the
initial amount of the substance (initial condition).

(b) Volume: If the overall volume of the system is changing, find a formula for the volume at
time t.

(c) Rates: Units of dy/dt should be y-units/t-units. Please check your units! Often you are
given concentrations and rate information in which case:

• Rate IN = (concentration coming in)(fluid-in rate). In Math 125, these were constants.
In this course, we may give a function f(t) for a changing concentration.

• Rate OUT = (concentration of system)(fluid-out rate) =

(
y

V (t)

)
(rate out),

where V (t) = volume of fluid in the system. Since y = y(t) is the current amount of
substance, the fraction y

V (t)
gives the current concentration in the system at time t.

(This does assume the system is well mixed, we always make this assumption in these
problems)

4. Behavior/Solutions : In Math 125, we only did problems where rate in was constant and volume
was constant (in which case we got a separable equation). We can now do problems where rate
in and/or volume is not constant. These models often give interesting asymptotic behavior. We
often ask about the concentration as t→∞.



Temperature Models

Newton’s Law of Cooling: “The rate of change of temperature an object is proportional to the
difference between the object and the surrounding temperature.”
I have been told that this model is good for heat transfer through convection and it models well the
rate of change in temperature between a solid and a fluid/gas. I have also been told it is more accurate
when the temperature differences are small.

1. The model :
dT

dt
= k(T − Ts), where Ts is temperature of the surroundings and T = T (t) is the

temperature of the object.

2. Comments : This model is sometimes used when the temperature of the surroundings is variable,
in which case Ts = Ts(t) would need to be given and the equation will not be separable. In Math
125, we only discussed cases in which Ts was constant, in which case you get a separable equation.

3. Constants : The constant k is called the cooling constant and is dependent on the object, sur-
roundings, and container. For cooling coffee, a k closer to zero would mean you have a mug with
better insulation.

4. General Behavior : If Ts is constant, there is an equilibrium solution at T (t) = Ts and all starting
temperatures (above or below this temperature) will give functions that tend toward Ts as t→∞.

5. Solutions : If Ts is constant, we can separate and solve to get T (t) = Ts + (T0 − Ts)e
kt. You

should know how I got this!. So we see that this assumption leads to an exponential function for
temperature.

Stefan-Boltzmann law: “The rate of change of temperature of an object due to radiation is propor-
tional to the difference between the fourth power of the object’s temperature and the fourth power of
the surrounding temperature.”
I have been told that this model is good for heat transfer through radiation. An example is a red hot
piece of iron radiating heat. In these scenarios typically the difference in temperature is very large.

1. The model :
dT

dt
= k(T 4 − T 4

s ), where Ts is temperature of the surroundings and T = T (t) is the

temperature of the object. To simplify the problem, in the homework you will assume that Ts is

small relative to T and the equation will become
dT

dt
= kT 4.

2. Constants : The constant k is the cooling constant and it depends on the material of the object
and surroundings.

3. General Behavior : Similar to Newton’s law of cooling in terms of equilibrium and long term
behavior.

4. Solutions : You’ll do this in homework for the simplified version. It is NOT exponential, it is a
rational function.

NOTE: To truly study heat transfer, you need the heat equation which you will study in Math 309.



Financial Models

Interest bearing accounts where “interest is compounded continuously”

1. The No Interest Model : If you put money into a jar (or under your mattress), then you don’t
earn any interest. If you approximate that you put in $500 each year, then the model for the
amount of money saved will be ‘rate of change due to deposits’ = 500. In general, ‘the rate due
to deposits/payments’ = P = the annual amount we pay/deposit.

2. The Amount with Interest Model : When a banker says “interest has an annual decimal rate of r,
compounded continuously”, then they are saying that interest is proportional to the amount in
the account. Meaning ‘the rate due to interest’ = ry.
If we invest a lump sum of money y(0) = y0 into an account paying an annual decimal rate of
r, compounded continuously and we NEVER deposit or pay any money, then we get the model
dy

dt
= ry with a solution of y(t) = y0e

rt for the amount of money in the account after t years.

3. Compound Interest AND regular deposits/payment : Typical in saving money or paying off a debt,
there is interest AND regular deposits/payments.

Putting this all together:
dy

dt
= ry ± P dollars/year

(Note: The ± would be positive if the deposits are adding to the account balance and negative if
you are making payments that decrease the balance of the account)

4. Comments : If you take a finance/accounting class in investments or mortgage, you will find that
there are precise formulas that can generate payments schedules to the nearest penny. But these
formulas are messy and a bit tedious to use. In comparison, the model above is easy to set up
and gives a formula that’s easy to use (and it gives a very good approximation). Since personal
depositing and payments aren’t typically precise, the models above can be used to get very good
estimates for interest bearing account balances.

5. Behavior/Solutions : Solutions are exponential. So compound interest leads to exponential growth.
Put away a bit of money each month with a reasonable interest rate and it can grow to be a very
large sum over 20-30 years, that’s the power of compound interest! (It’s exponential!)



Force/Motion Models
By Newton’s second law, F = ma, where F is force, m is mass, and a is acceleration.
Since a = dv

dt
, we get mdv

dt
= F = ‘the sum of all the forces on the object’.

1. Labeling : Always draw a force diagram. Decide if you want upward velocities to be positive or
negative (this is your choice!), but then be consistent throughout the rest of the problem.

2. No air resistance: “A falling object near earth’s surface ignoring air resistance.”

The only force is due to gravity. Thus, m
dv

dt
= ±mg, where g = 9.8 m/s2 = 32 ft/s2. (It is positive

or negative depending on our labeling).

3. Air resistance models : “A falling object near earth’s surface with air resistance.”

(a) The force due to air resistance is called the drag force. It is always in the direction opposite
of velocity.

(b) One model for air resistance (good for smaller objects) is: “The force due to air resistance is
proportional to velocity and in the opposite direction.”
Thus, ‘drag force’ = −kv, where k is positive and is called the drag coefficient.

If we label so that up is positive, then we get the model m
dv

dt
= −mg − kv.

If we label so that down is positive, then we get the model m
dv

dt
= mg − kv. (books often

use this labeling when studying terminal velocity)

(c) Another model for air resistance (good for larger objects) is: “The force due to air resistance
is proportional to the square of velocity.” In this case, if we let downard motion be positive
velocity, then we get:

m
dv

dt
= mg − kv2 if the object is moving downward (most common use)

m
dv

dt
= mg + kv2 if the object is moving upward.

(d) Comment : Terminal velocity is the equilibrium velocity in an air resistance model (it is the
velocity that you approach at time increases).

4. Object in a liquid : Much is the same in a liquid, except there is a bouyant force. The resistance
is often modeled as a constant times velocity (same as with air resistance). The bouyant force is
the weight of the liquid displaced by the object (let b be the mass of the liquid displaced by the

object). In any case, you get a differential equation that looks something like m
dv

dt
= mg−kv−bg

5. Changing gravity, i.e. objects far away from the Earth’s surface: Let x be the distance from the
surface of the earth and R be the radius of the Earth. In terms of x, the force due to gravity is
given by F = − mgR2

(R+x)2
(law of gravitation). For small values of x (near the Earth’s surface) notice

that − mgR2

(R+x)2
≈ −mg. Thus, we get m

dv

dt
= − mgR2

(R + x)2
. Note: x, v, and t depend on each other,

we need to simplify/rewrite this equation in terms of only two variables:
By definition, note that v = dx

dt
. And the chain rule gives dv

dt
= dv

dx
dx
dt

= v dv
dx

. With this, we can

rewrite the differential equation in terms of v and x to look like mv dv
dx

= − mgR2

(R+x)2
.

The book shows how to find escape velocity which is the intial velocity needed to completely
escape the Earth’s pull due to gravity.



RLC Circuit Models
Consider the flow of electricity through a series circuit containing a resistor, an inductor, and a capacitor
(called an RLC circuit). The total charge on the capacitor at time t is q = q(t) in coulombs (C). We
also define I = I(t) = q′(t) to be the current in the circuit at time t in amperes (A). Typically, our goal
will be to find the function q(t).
First, let me define some constants, variables and units.

Definitions and Kirchoff’s circuit laws :

• Kirchoff’s second law states: In a closed circuit the impressed voltage is equal to the sum of the
voltage drops in the rest of the circuit

• We will let E = E(t) be the impressed voltage in volts (V ), which is the incoming voltage to the
circuit.

• Laws of electricity:

1. The voltage drop across the resistor is proportional to the current that flows through it.
We write RI = Rq′, where R is the proportionality constant due to resistance.
We call R the resistance with the unit ohms (Ω).

2. The voltage drop across the capacitor is proportional to the total charge on the capacitor.
Convention is to write 1

C
q, where 1

C
is proportionality constant due to the capacitor.

We call C the capacitance with the unit farads (F ).

3. The voltage drop across the inductor is proportional to the derivative of the current.
We write LI ′ = Lq′′, where L is the proportionality constant due to the inductor.
We call L the inductance with the unit henrys (H).

• The units are related as follows: V = Ω · A = C
F

, and Ω = H
s

Putting these laws together, we have

Lq′′ + Rq′ +
1

C
q = E(t)

Examples :

1. A series circuit has a capacitor of 0.00003 F, a resistor of 200 Ω, and an inductor of 0.6 H.
There is no impressed voltage. The initial charge on the capacitor is 0.0001 C and there is no
initial current. Set up the differential equation and initial conditions for the charge q(t).

Solution: You are given C = 0.00003, R = 200, L = 0.6, and E(t) = 0.
Therefore, 0.6q′′ + 200q′ + (1/0.00003) q = 0, with q(0) = 0.0001 and q′(0) = 0.

2. A series circuit has a capacitor of 0.0002 F and an inductor of 1.5 H (and no resistor).
There is no impressed voltage. The initial charge on the capacitor is 0.005 C and there is no initial
current. Set up the differential equation and initial conditions for the charge q(t).

Solution:You are given C = 0.0002, R = 0, L = 1.5, and E(t) = 0.
Therefore, 1.5q′′ + (1/0.0002) q = 0, with q(0) = 0.005 and q′(0) = 0.


