Partial Derivatives Quick Overview

In Math 307, we sometimes see functions of the form $f(x, y)$. This is called a multivariable function. It gives a third value, let's say z, for each valid value pair of values (x, y) (that is $z=f(x, y)$). In Math 126 , you will spend several weeks introducing and studying such functions. In this course, we will have a few occasions where we need to find a rate of change with respect to one of the variables. We will define:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(x, y)=f_{x}(x, y)=\text { 'the partial derivative of } f \text { with respect to } x \text { '. } \\
& \frac{\partial f}{\partial y}(x, y)=f_{y}(x, y)=\text { 'the partial derivative of } f \text { with respect to } y \text { '. }
\end{aligned}
$$

For this course, you only need to know how to compute simple partial derivatives of functions of the form $f(x, y)$.
Here is how you compute $\frac{\partial f}{\partial x}$:
Treat everything in $f(x, y)$ as a CONSTANT except x (i.e. treat y like a constant). Then take the derivative with respect to x.
Here is how you compute $\frac{\partial f}{\partial y}$:
Treat everything in $f(x, y)$ as a CONSTANT except y (i.e. treat x like a constant). Then take the derivative with respect to y.

A few basic examples:

1. If $f(x, y)=x^{3}+2 y^{5}+4$, then the partial derivatives are

$$
\begin{array}{ll}
\frac{\partial f}{\partial x}=3 x^{2} & \text { Note: } y \text { is a constant so the deriv. of } 2 y^{5} \text { is zero. } \\
\frac{\partial f}{\partial y}=10 y^{4} & \text { Note: } x \text { is a constant so the deriv. of } x^{3} \text { is zero. }
\end{array}
$$

2. If $f(x, y)=x^{4} y^{3}+8 x^{2} y+y^{4}+5 x$, then the partial derivatives are

$$
\begin{array}{ll}
\frac{\partial f}{\partial x}=4 x^{3} y^{3}+16 x y+5 & \text { Note: } 8 \text { and } y \text { are coefficients of } x^{2}, \text { where } y^{4} \text { is just a constant. } \\
\frac{\partial f}{\partial y}=3 x^{4} y^{2}+8 x^{2}+4 y^{3} & \text { Note: } 8 x^{2} \text { is the coefficient of } y \text { and the deriv. of } y \text { is } 1 .
\end{array}
$$

3. If $f(x, y)=\frac{x^{2}}{y^{3}}=\frac{1}{y^{3}} x^{2}=y^{-3} x^{2}$, then the partial derivatives are

$$
\begin{array}{ll}
\frac{\partial f}{\partial x}=\frac{2 x}{y^{3}} & \text { Note: No need for quotient rule, only an } x \text { in the numerator. } \\
\frac{\partial f}{\partial y}=-3 y^{-4} x^{2} & \text { Note: Again, no need for quotient rule, only a } y \text { in the denominator. }
\end{array}
$$

4. If $f(x, y)=\left(x^{2}+y^{3}\right)^{10}+\ln (x)$, then the partial derivatives are

$$
\begin{array}{ll}
\frac{\partial f}{\partial x}=20 x\left(x^{2}+y^{3}\right)^{9}+\frac{1}{x} & \text { Note: We used the chain rule on the first term. } \\
\frac{\partial f}{\partial y}=30 y^{2}\left(x^{2}+y^{3}\right)^{9} & \\
\text { Note: Chain rule again, and second term has no } y .
\end{array}
$$

5. If $f(x, y)=x e^{x y}$, then the partial derivatives are

$$
\begin{array}{ll}
\frac{\partial f}{\partial x}=e^{x y}+x y e^{x y} & \\
\frac{\text { Note: Product rule, and chain rule in the second term. }}{\frac{\partial f}{\partial y}}=x^{2} e^{x y} & \\
\text { Note: No product rule, but we did need the chain rule. }
\end{array}
$$

