Math 300 Definitions and Theorems from Chapter 2

Essential Definitions

Let P, Q, and R be mathematical statements.

- 1. \forall = For all. \exists = There exists. s.t. = such that.
- 2. A mathematical **statement** is a sentence that is either true or false.
- 3. $P \wedge Q = "P \text{ AND } Q"$: true only when both P and Q are true.
- 4. $P \lor Q =$ "P OR Q": true when either P is true or Q is true, or both.
- 5. $P \Rightarrow Q =$ "if P, then Q" = "P implies Q": true except when P is true and Q is false.
- 6. $P \Leftrightarrow Q = "P"$ if and only if Q": means P and Q are logically equivalent (have the same truth values in all cases). To prove a statement of the form $P \Leftrightarrow Q$, you must
 - (a) Prove $P \Rightarrow Q$.
 - (b) Prove $Q \Rightarrow P$.
- 7. The statement $Q \Rightarrow P$ is called the **converse** of the statement $P \Rightarrow Q$.
- 8. A **truth table** summarizes the properties of logical statements by listing all possible cases. Here are the truth tables for the basic logical connectives:

P	Q	$P \Rightarrow Q$	$P \lor Q$	$P \wedge Q$
Т	Т	Т	Т	Т
Τ	F	F	Γ	F
T F	Т	T	T	F
F	F	T	F	F

Negations and Logic Rules

1.
$$\neg (P \Rightarrow Q) \Leftrightarrow P \land \neg Q$$
.

2.
$$\neg(\forall x)P(x) \Leftrightarrow (\exists x)\neg P(x)$$
.

3.
$$\neg(\exists x)P(x) \Leftrightarrow (\forall x)\neg P(x)$$
.

Rule	For Logic	For Sets
(de Morgan's Laws)	$\neg (P \land Q) = \neg P \lor \neg Q$	$(A \cap B)^c = A^c \cup B^c$
(de Morgan's Laws)	$\neg (P \lor Q) = \neg P \land \neg Q$	$(A \cup B)^c = A^c \cap B^c$
(Distributive Laws)	$P \lor (Q \land R) = (P \lor Q) \land (P \lor R)$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
(Distributive Laws)	$P \wedge (Q \vee R) = (P \wedge Q) \vee (P \wedge R)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Main Proof Techniques / Proof Templates

Here is what each proof technique should look like. That is, these are the templates that you are filling in when you give a proof.

1. Any Direct Proof $(P \Rightarrow Q)$

Theorem P implies Q.

proof Let P be true.

:

(Here you write out the definitions that appear in P and you try to show using logical deductions that the definitions in Q are satisfied)

:

Thus, Q is true.

2. Contrapositive $(\neg Q \Rightarrow \neg P)$

Theorem P implies Q

proof We prove the contrapositive. Let $\neg Q$ be true.

:

(Here you write out the definitions that appear in $\neg Q$ and you try to show using logical deductions that the definitions in $\neg P$ are satisfied)

:

Thus, $\neg P$ is true.

3. Contradiction $(\neg (P \land \neg Q))$

Theorem P implies Q

proof We assume the negation in order to get a contradiction.

Let P and $\neg Q$ both be true.

:

(Here you write out the definitions that appear in P and in $\neg Q$ and you try to show using logical deductions that a contradiction arises)

:

Thus, we have arrived at a contradiction $(\rightarrow \leftarrow)$.