
Fundamental Theorem of Arithmetic and Divisibility Review Mini Lecture

Here we will provide a proof of the Fundamental Theorem of Arithmetic (about prime factorizations).
Before we get to that, please permit me to review and summarize some divisibility facts.

Definition We say b divides a and write b|a when there exists an integer k such that a = bk.
We also defined gcd(a, b) to be the largest divisor of both a and b.

Basic Theorems

1. Theorem (The Division Algorithm)
For all a, b ∈ N, there exists q, r ∈ N such that a = bq + r and 0 ≤ r < b.

For the proof we used the well ordering principle to find r, then we gave a proof my contradiction
to show r < b. See your notes. Note in particular that if r = 0, then b divides a.

2. Theorem For all a, b, c ∈ Z, gcd(a, b) = gcd(a − bc, b).

For the proof, we showed that any common divisor of a and b is also a common divisor of a − bc

and b (and vice versa). This theorem is key as it shows why the Euclidean algorithm works to
compute the greatest common divisor.

3. Theorem (The Euclidean Algorithm) Let a, b ∈ N with a ≥ b > 0 and define r0 = a, r1 = b and
ri = qi+1ri+1 + ri+2, where 0 ≤ ri+2 < ri+1.
If rn 6= 0 and rn+1 = 0 for some n, then gcd(a, b) = rn.

For the proof we used the previous theorem over and over again.

4. Theorem (Bezout’s Lemma or the Linear Diophantine Equation Theorem) For all a, b ∈ Z, not
both zero, there exists x, y ∈ Z such that ax + by = c if and only if gcd(a, b) divides c.

For the reverse direction we proved this using induction to explain why we could back solve through
the Euclidean algorithm to find a solution to ax1+by1 = d where d = gcd(a, b), then we multiplied
x1, y1, and d by the correct multiple to get c. For the forward direction, we used the fact that
d = gcd(a, b) is a common factor of a and b and substituted into the equation ax + by = c to find
that d divides c.

STRATEGY: Whenever a gcd(a, b) appears in a theorem, you can immediately say the following
in your proof: Let d = gcd(a, b). By the LDE Theorem, there exists x, y ∈ Z such that ax+by = d.
This can be quite useful as we illustrated in examples.

Here are several basic consequences that can be proved with the theorems above (you should know
how to prove all of these):

• Theorem If c|a and c|b, then c|(a + b).

• Theorem If gcd(a, b) = 1 and a|bq, then a|q. (This is important!)

• Theorem If p is a prime and p|ab, then p|a or p|b. (This follows from the theorem above).

• Theorem If p is a prime and p|a1a2 · · · an, then p divides at least one of a1, a2, . . ., or an.
(This follows by induction and the theorem above).

Now for the proving of the fundamental theorem of arithmetic.



Theorem (The Fundamental Theorem of Arithmetic)
For all n ∈ N, n > 1, n can be uniquely written as a product of primes (up to ordering).
Another way to say this is, for all n ∈ N, n > 1, n can be written in the form n =

∏r

i=1
pi = p1p2 · · · pr

for some unique set of primes p1, p2, . . . , pr.
Examples: 12 = 2 · 2 · 3, 75 = 3 · 5 · 5, 90 = 2 · 3 · 3 · 5, 13 = 13, 15 = 3 · 5.

Proof: We must show two things. First that such a factorization into primes exists, then we must show
the factorization is unique.

We will use a contradiction proof and the well-ordering principle to prove existence. Assume there
exists n ∈ N, n > 1 that have CANNOT be written as a product of primes. By the well-ordering
principle, there is a natural number, call it n0 > 1, that cannot be written as a product or primes.

The number n0 cannot be a prime number because otherwise it would be it’s own prime factorization
and we’re assuming n0 can’t be factored into primes. Hence, n0 is composite. That means that n0 has
some divisor a strictly between 1 and n0. Hence n0 = ab for some integers a and b where 1 < a < n0

(and therefore 1 < b < n0). Since n0 is the smallest example that cannot be factored into primes and
a and b are smaller, a and b must have prime factorizations. Thus, we can write a = p1p2 · · · pu and
b = q1q2 · · · qv for some primes pi and qj. But that means that n0 = ab = p1p2 · · · puq1q2 · · · qv is a
product of primes which is a contradiction. Therefore our original assumption is wrong. Hence, all
integers n ∈ N, n > 1 CAN be written as a product of primes.

Now we show uniqueness. Let n ∈ N, n > 1 and assume n = p1p2 · · · pr and n = q1q2 · · · qs are
two prime factorizations of n. We will show that these factorizations must be the same. Since both of
these factorizations are equal to n we have p1p2 · · · pr = n = q1q2 · · · qs. Assume that the factorizations
are different. After canceling all the common factors from both sides, some sets of different primes will
remain on each side (or else the factorizations would be the same), say: pi1pi2 · · · piu = qj1qj2 · · · qjv

. If p

is one of the primes on the left-hand side, then by definition of divisibility p divides qj1qj2 · · · qjv
. Since p

is a prime, using the theorem from above, p must divide at least one of prime, call it q, from qj1, qj2, · · ·,
or qjv

. But if p is a prime and q is a prime and p divides q, then p = q (because nothing divides a prime
besides one and itself). But this contradicts the fact that the primes on each side were different. Thus,
all the factors on each side must be the same. �

Here is an alternate proof of existence using Strong Induction (I only show you this so that you have
another example of strong induction and how it can be used).

Theorem For all n ∈ N, n > 1, there exists a primes factorization of n.
Proof: We use strong induction on n.
BASE STEP: The number n = 2 is a prime, so it is it’s own prime factorization.
INDUCTIVE STEP: Assume i = 2, · · · , k all have prime factorizations for some k ≥ 2.
If k + 1 is a prime, then it is it’s own prime factorization (and we would be done).
If k + 1 is not a prime, then k + 1 has some divisor a strictly between 1 and k + 1. Hence k + 1 = ab

for some integers a and b where 1 < a < k + 1 (and therefore 1 < b < k + 1). By the strong inductive
hypothesis (twice), a and b must have prime factorizations. Thus, we can write a = p1p2 · · · pu and
b = q1q2 · · · qv for some primes pi and qj. And by substitution, k + 1 = ab = p1p2 · · · puq1q2 · · · qv is a
prime factorization of k + 1.
Hence, in all cases, k + 1 can be factored into primes.
Thus, by the principle of strong induction, a prime factorization exists for all integers n > 1. �


