Fundamental Theorem of Algebra
Here we will use induction in the proof of the fundamental theorem of algebra to illustrate how induction
is sometimes used in larger problems.

Definitions: A function f : R — R is a polynomial if it can be written in the form

d
f(l’) :Zcil’i:CO+011’+621’2—|—...+CdId’
=0

where ¢; € R fori = 0,1,2,...,d are called the coefficients. If d is the exponent of the largest term that
has a nonzero coefficients, we say the polynomial has degree d. A zero, or root, of the polynomial f
is a number, a, such that f(a) = 0.

Examples:

)
(x)
e f(x) =x — 2 is a polynomial of degree 1 and it has one real root a = 2.
o f(x)=12>—6x+9=(z— 3)?is a polynomial of degree 2 and it has one real root, a = 3.
o f(x)=a3—x=ux(x?—1) is a polynomial of degree 3 and it has three real roots, a = 0, —1, +1.

Theorem: (The Fundamental Theorem of Algebra)
A polynomial of degree d has at most d real roots.

The proof below is based on two lemmas that are proved on the next page.
Proof: We use induction on d.

BASE STEP: If d = 0, then f(z) = ¢o for some nonzero constant c¢g. Thus, f(z) is never zero, so it has
zero roots. Hence, in the d = 0 case the number of roots does not exceed d.

INDUCTIVE STEP: Assume every polynomial of degree k has at most k roots for some integer k > 0.

Let f(x) be a polynomial of degree k + 1. We will show that f(z) has at most k + 1 roots.

If f(x) has no roots, then we are done, 0 < k + 1.

If f(x) has at least one root a, then, by Lemma 2, we can write f(x) = (z — a)h(x) for some polynomial
h(z) with degree k. By the inductive hypothesis, h(x) has at most k roots.

Since  — a has one root and h(z) has at most k roots, f(x) = (x — a)h(x) has at most k + 1 roots.
Thus, in any case, f(z) has at most k + 1 roots.

Hence, every polynomial of degree d has at most d roots. [



Lemma 1: Vz,y € R and Vn € N,

zn_yn: (z_y)(zn—l+$n—2y+$n—3y2+___+$yn—2+yn 1)‘

Proof: We expand the right hand side using the distributive axiom to get
(l. _ y)(l.n—l _I_ l.n—2,y _I_ . _I_ l.yn—2 _I_ yn—l) — l.(l.n—l _I_ l.n—2y _I_ . _I_ l.yn—2 _I_ yn—l)
_y(l.n—l _I_ l.n—2y _I_ . _I_ l.yn—2 _I_ yn—l)

=" + 2"y +an” 2y2 R e T S T
_l.n—ly — 2y2 . l.2yn 2 _ y n—1 __ yn

Canceling all the middle terms, leaves only ™ — y”. Thus, factoring in this way is always possible. [

Examples:

-yt =(—-y)(z+y), 2 -y’ =(x—y) (@ +zy+y°), ' —y* = (x — y)(2* + 2y + zy* + y°), ete.

Lemma 2: Suppose f(z) is a polynomial of degree d > 1.
The number a is a zero of f(z) if and only if f(z) = (r—a)h(z) for some polynomial h(x) of degree d— 1.

Proof: We must prove both direction.

We prove the converse direction first. Assume f(x) = (x — a)h(z) for some polynomial h(x) of degree
d — 1. By substitution, f(a) = (a —a)h(a) =0-h(a) = 0. Thus, f(a) =0, so a is a zero of f(z).

Now we prove for forward direction. Assume a is a real root of f(x). Since f(z) is of degree d, by
definition, f(x) = Z?:o c;x®, with real number coefficients such that ¢y # 0. Since a is a root of f(x),
f(a) = 0 and by substitution Z?:o c;a’ = 0. By subtracting this expression (which is just subtracting
zero), we can rewrite f(z) as

) = ) =0 = J@) = fl@) = 3 s’ = 3w’ = D ale! —

The term corresponding to i = 0 cancels because cy(z® — a®) = co(1 — 1) = 0, so we have f(z) =
S ci(x? —a?). By Lemma 1, for each i > 0, 2% — a' = (z — a)(z' " + 2" 2a + --- + za’ % + ¢’ !). By
defining h;(z) = 2 + 2 2a + - - - + xa'? + @', we now have z° — a' = (x — a)h;(x) where h;(z) is a
polynomial of degree i — 1. Hence, we can rewrite f(z) as

fl@) =30, ez’ —al)

=20, cile — a)hi(x)
(z—a) L, cihi(z)
= (z —a)h(z)

Note that h(z) = S cihi(z) = 20 ci(z™ ' + 27 2a 4+ --- + za* % 4+ '), so h(z) is a polynomial.
And the term 2% occurs only once, when i = d, and it occurs with coefficient ¢; which is not zero.
Hence, h(x) has degree d — 1. I

Lemma 2 theorem effectively shows that we can always “factor out” the expression (x — a) from a
polynomial when a is a root.



