
Fundamental Theorem of Algebra
Here we will use induction in the proof of the fundamental theorem of algebra to illustrate how induction
is sometimes used in larger problems.

Definitions: A function f : R → R is a polynomial if it can be written in the form

f(x) =

d∑

i=0

cix
i = c0 + c1x + c2x

2 + · · · + cdx
d,

where ci ∈ R for i = 0, 1, 2, . . . , d are called the coefficients. If d is the exponent of the largest term that
has a nonzero coefficients, we say the polynomial has degree d. A zero, or root, of the polynomial f

is a number, a, such that f(a) = 0.

Examples:

• f(x) = 5 is a polynomial of degree 0 and it has zero real roots. (Note that the constant polynomial
f(x) = 0 has degree undefined, not degree zero).

• f(x) = x− 2 is a polynomial of degree 1 and it has one real root a = 2.

• f(x) = x2 − 6x + 9 = (x − 3)2 is a polynomial of degree 2 and it has one real root, a = 3.

• f(x) = x3 − x = x(x2 − 1) is a polynomial of degree 3 and it has three real roots, a = 0,−1, +1.

Theorem : (The Fundamental Theorem of Algebra)
A polynomial of degree d has at most d real roots.

The proof below is based on two lemmas that are proved on the next page.

Proof: We use induction on d.

BASE STEP: If d = 0, then f(x) = c0 for some nonzero constant c0. Thus, f(x) is never zero, so it has
zero roots. Hence, in the d = 0 case the number of roots does not exceed d.

INDUCTIVE STEP: Assume every polynomial of degree k has at most k roots for some integer k ≥ 0.

Let f(x) be a polynomial of degree k + 1. We will show that f(x) has at most k + 1 roots.
If f(x) has no roots, then we are done, 0 ≤ k + 1.
If f(x) has at least one root a, then, by Lemma 2, we can write f(x) = (x−a)h(x) for some polynomial
h(x) with degree k. By the inductive hypothesis, h(x) has at most k roots.
Since x − a has one root and h(x) has at most k roots, f(x) = (x− a)h(x) has at most k + 1 roots.
Thus, in any case, f(x) has at most k + 1 roots.
Hence, every polynomial of degree d has at most d roots. �



Lemma 1: ∀x, y ∈ R and ∀n ∈ N,

xn − yn = (x − y)(xn−1 + xn−2y + xn−3y2 + · · · + xyn−2 + yn−1).

Proof: We expand the right hand side using the distributive axiom to get
(x − y)(xn−1 + xn−2y + · · · + xyn−2 + yn−1) = x(xn−1 + xn−2y + · · · + xyn−2 + yn−1)

−y(xn−1 + xn−2y + · · · + xyn−2 + yn−1)
= xn + xn−1y + xn−2y2 + · · · + x2yn−2 + xyn−1

−xn−1y − xn−2y2 − · · · − x2yn−2 − xyn−1 − yn.

Canceling all the middle terms, leaves only xn − yn. Thus, factoring in this way is always possible. �

Examples:
x2 − y2 = (x − y)(x + y), x3 − y3 = (x− y)(x2 + xy + y2), x4 − y4 = (x− y)(x3 + x2y + xy2 + y3), etc.

Lemma 2: Suppose f(x) is a polynomial of degree d > 1.
The number a is a zero of f(x) if and only if f(x) = (x−a)h(x) for some polynomial h(x) of degree d−1.

Proof: We must prove both direction.

We prove the converse direction first. Assume f(x) = (x − a)h(x) for some polynomial h(x) of degree
d − 1. By substitution, f(a) = (a − a)h(a) = 0 · h(a) = 0. Thus, f(a) = 0, so a is a zero of f(x).

Now we prove for forward direction. Assume a is a real root of f(x). Since f(x) is of degree d, by
definition, f(x) =

∑
d

i=0
cix

i, with real number coefficients such that cd 6= 0. Since a is a root of f(x),

f(a) = 0 and by substitution
∑

d

i=0
cia

i = 0. By subtracting this expression (which is just subtracting
zero), we can rewrite f(x) as

f(x) = f(x) − 0 = f(x) − f(a) =
d∑

i=0

cix
i −

d∑

i=0

cia
i =

d∑

i=0

ci(x
i − ai).

The term corresponding to i = 0 cancels because c0(x
0 − a0) = c0(1 − 1) = 0, so we have f(x) =∑

d

i=1
ci(x

i − ai). By Lemma 1, for each i > 0, xi − ai = (x− a)(xi−1 + xi−2a + · · · + xai−2 + ai−1). By
defining hi(x) = xi−1 + xi−2a + · · · + xai−2 + ai−1, we now have xi − ai = (x− a)hi(x) where hi(x) is a
polynomial of degree i − 1. Hence, we can rewrite f(x) as

f(x) =
∑

d

i=1
ci(x

i − ai)

=
∑

d

i=1
ci(x− a)hi(x)

= (x − a)
∑

d

i=1
cihi(x)

= (x − a)h(x)

Note that h(x) =
∑

d

i=1
cihi(x) =

∑
d

i=1
ci(x

i−1 + xi−2a + · · · + xai−2 + ai−1), so h(x) is a polynomial.
And the term xd−1 occurs only once, when i = d, and it occurs with coefficient cd which is not zero.
Hence, h(x) has degree d − 1. �

Lemma 2 theorem effectively shows that we can always “factor out” the expression (x − a) from a
polynomial when a is a root.


