

ii. If f is surjective and g is surjective, then fg is surjective.

Just
$$\rightarrow$$
 $f(x)=x, g(x)=x$ $f(x)g(x)=x^2$
the 4.24 or many others

iii. If
$$f$$
 is injective and g is injective, then $f+g$ is injective.

$$f(x) = x^{3}$$

$$g(x) = -x$$

$$f(x) = x^{3} - x$$

(b) (5 pts) For n = 14 and k = 12, verify through calculation that $\frac{n}{\gcd(n,k)}$ divides $\binom{n}{k}$. (There is no proof to give here, I just want to see that you verify the result for the particular values n = 14 and k = 12.)

$$g(d(14,12) = 2$$

$$g(d(14,12) = \frac{14}{2} = 7$$

$$g(d(14,12) = \frac{14!}{2} = \frac{14!}{2-1} = 7.13 = 91$$

$$So g(d(14,12)) = \frac{14!}{2-1} = \frac{14!}{2-1} = 7.13 = 91$$

$$So g(d(14,12)) = \frac{14!}{2-1} = \frac{14!}{2-1}$$

(c) (5 pts) Using the binomial theorem and Pascal's triangle to help you expand, prove that for all $x, y \in \mathbb{Z}$, if gcd(x, y) = 2, then the number $x^4 - (x - y)^4 + y^4$ is divisible

by 32.

Since
$$\gcd(xy) = 2$$
, $2 \mid x$ and $2 \mid y$. By $\det^{4} x = 2 \mid k$ and $y = 2 \mid k$

for some $k, l \in \mathbb{Z}$. By the binomial theorem,

$$(x^{4} - (x - y)^{4} + y^{4} = x^{4} - (x^{4} - 4x^{3} + 6x^{2}y^{2} - 4xy^{3} + y^{4}) + y^{4}$$

$$= 4(2k)^{3}2l + 6(k)^{3}(2l)^{2}4 + 4(2k)(2l)^{3}$$

$$= 4 \cdot 2^{4}k^{2}l + 6(2^{4}k^{2}l^{2} + 2^{4}kl^{2})$$

$$= 2^{5}(2k^{2}l + 3k^{2}l^{2} + 2kl^{2})$$

$$= 32 d \qquad \text{for som integer } d = 2k^{3}l + 3k^{2}l^{2}$$

$$= 32 d \qquad \text{for som integer } d = 2k^{3}l + 3k^{2}l^{2}$$

$$= 32 d \qquad \text{for som integer } d = 2k^{3}l + 3k^{2}l^{2}$$

$$= 32 d \qquad \text{for som integer } d = 2k^{3}l + 3k^{2}l^{2}$$

2.	(a) (8 pts) Consider $f: A \to B$, $g: B \to C$, and $h = g \circ f: A \to C$, where A, B and C ar subsets of \mathbb{R} . Indicate which statements are true and which are false (no proof needed):	e
	i. If h is bijective, then f is surjective. SEE HW 4.34c TRUE FALSI	
	ii. If h is surjective, then g is surjective. SEE HW 4.34 d FOR PROOF FALSI	${\mathbb E}$
	iii. If f is decreasing and g is decreasing, then h is decreasing. TRUE FALSE FALSE	
	iv. If f is increasing and g is increasing, then h is increasing. THINK ABOUT SIMILAR HW PROBLEM	Ē
	 (b) (8 pts) Let f: A → B, g: B → C, and h = g ∘ f: A → C be functions. Consider the following theorem. Theorem: If h is injective, then f is injective. Now is your chance to be a proof grader. Of the four "proofs" below, only ONE is correct. Tell me which proof is correct and for each of the other proofs give a specific reason that the proof is incorrect. 	
	('Proof' 1) Let $x_1, x_2 \in A$ such that $h(x_1) = h(x_2)$. Since h is injective, $x_1 = x_2$. Since f well-defined, $f(x_1) = f(x_2)$. Thus, we have $f(x_1) = f(x_2)$ and $x_1 = x_2$. \square	is
	('Proof' 2) Let $x_1, x_2 \in A$ such that $f(x_1) = f(x_2)$. Since g is well-defined, $g(f(x_1)) = g(f(x_2))$. By definition, $h(x_1) = h(x_2)$. Since h is injective, $x_1 = x_2$. \square	2)).
	('Proof' 3) Let $x_1, x_2 \in A$ such that $x_1 = x_2$. Since f is well-defined, $f(x_1) = f(x_2)$. Since g well-defined, $g(f(x_1)) = g(f(x_2))$. By definition, $h(x_1) = h(x_2)$. Since h is injective, $x_1 = x_2$. \square	is
	('Proof' 4) Let $x_1, x_2 \in A$ such that $f(x_1) = f(x_2)$. Since g is well-defined, $g(f(x_1)) = g(f(x_2))$. Since g is injective, $g(f(x_1)) = g(f(x_2))$. Since g is well-defined, $g(f(x_1)) = g(f(x_2))$.	,)).
	ANSWER AND EXPLANATION:	
	PROOF I IS WRONG, IT DOES NOT STANT WITH flat =f(xi)	
	PROOF 2 IS CORRECT	
	PROOF 3 IS WRONG, IT PROVES NOTHING, IT STARTS WITH XI=X2 and ends will XI=X2.	
٠.	PROOF 4 IS WRONG, IT ASSUMES g is INJECTIVE WHEN IT GOES FROM g(f(x))=g(f(x)) to f(x)=f(x).	
1	YOU HAVE BEEN EQUOYING AND DOING THE HONEWORK, THEN SHOULD KNOW THAT THE PROOF MUST START WITH $f(x_i) = f(x_1)$	

CHECK YOUR TIME! LEAVE 20 MINUTES FOR THE LAST PAGE!

3. (a) (13 pts) Consider the sequence defined by $a_1 = 2$, $a_2 = 12$, and $a_n = a_{n-1}a_{n-2} + 20a_{n-2}$ for $n \geq 3$. Using the precise phrasing for strong induction, prove that 2^n divides a_n for all $n \in \mathbb{N}$.

For n=1, $2^n=2^n$ divides because 9=2=2(1)=2(1). For n=2, $2^n=2^2=4$ divide $a_2=12$ break $a_2=12=4(3)=2^2(3)$.

IIND, STEP. ASSUME 25 divides at for E=1,2,--, K for some KEM, K22.

By the defining recurrence, akt = akaki + 20 akm

By the ind. hyp, 2" are and 2" 1 are, so Fp. gez such that $\alpha_k = 2^k p$ and $\alpha_{k-1} = 2^k q$

By substitution, $a_{k+1} = 2^{k}p 2^{k-1}q + 20 2^{k-1}q = 2^{2k-1}pq + 2^{k+1}5q$ = $2^{k+1}(2^{k-2}pq + 5q)$ and $2^{k-2}pq + 5q$

when is an integer because K-220

Hence, 2" dinder auti

(b) (10 pts) Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Prove if f is increasing, then f is injective.

pf Assume fis increasing.

Let If(x) = f(x2) with xxxx = 12.

we must show that x, = X2.

If x, = X2, then either x, <x2 or x, > X2.

Since fis increasing, if x, < x2, the f(x) = f(x).

and if x1 > x2, then f(x) > f(x).

Hence, if x, ex. or x, >x, then f(xi) & f(xx)

Since f(x) = f(x2), this can't be the case (that is x1 = XL = x = xx)

what you Should have withouthe frest

and the defin of the masing

JENY

MUCH LINE

)Imilar Th

No matter

a(f(x) - f(y)) - b > x - y for all $x, y \in \mathbb{R}$. Prove that f is increasing on \mathbb{R} . Assume X, XZETZ with X, EXZ]. Lettiny X=XZ and y=X, in the given relationship we have $a(f(x_1) - f(x_1)) - b > x_2 - x_1$. Since $x_1 < x_2$, $x_2 - x_1 > 0$. Should have written first Thus, a(f(x)) - f(x) - b > 0. Simplifying gins $f(x) - f(x) > \frac{b}{a}$ (Callowed because Since a, b > 0, $\frac{b}{a} > 0$, so f(x) - f(x) > 0. f(xx)-f(xx) > = (Callowed) because as d). $f(x_{\perp}) > f(x_{\parallel}) > so \left(f(x_{\parallel}) < f(x_{\parallel})\right)$ Thus (b) (12 pts) Let $f:A\to B,\,g:B\to C,$ and $h=g\circ f:A\to C$ be functions. Prove that if g is bijective and h is bijective, then f is surjective. (Be very clear about the order, justifications and sets you are referring to in your proof). Let beB. Since 9 1s a function defined from B to C, 9 (b) = c for some ceC. Swe did Yan identical problem during Since his surjective, there exists an a EA such that the review This appeared h (a) == c. in almost identical By definition of h, g(f(a)) = c. form on a previous notun Thus, g(b)=c=g(f(a)), so g(b)=g(f(a)). like 4.34 of Since q 1s injective, b=fa). Hence, If(a)=b for some acA. Should have

4., (a) (10 pts) Let $f: \mathbb{R} \to \mathbb{R}$ be a function for which there exists positive real numbers a and b

such that