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(a) (9 pts) Give a counterexample for each of the following statements. your coﬁnterexémples’
must be functions such that f :R - Randg: R —-R. - 7 4 ‘

i. If f is unbounded and decreasing, then f is surjective.
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ii. If f is surjective and g is surjective, then fg is surjective.
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iii. If f is injective a

is injective, tHen f + g is injective.
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(b) (5 pts) For n = 14 and k = 12, verify through calculation that aed(n k) divides ( L )

(There is no proof to give here, I just want to see that you verify the result for the particular
values n = 14 and k& = 12.)
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(c) (5 pts) Using the binomial theorem and Pascal’s triangle to help you expand,

prove that for all z,y € Z, if ged(z,y) = 2, then the number 2* — (z — y)* + y* is divisible
by 32.
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2. (a) (8 pts) Consider f: A — B, g: B — C, and h = go f: A — C, where A, B and C are
subsets of R. Indicate which statements are true and which are false (no proof needed):

i If A is bisects ¢ . otivg, SEE Hw 4234 e ( 0\
i is bijective, then f is surjective ! B TRUE ( FALSE )
. . L. . . o see Hw 4944 = -
ii. If h is surjective, then g is surjective. o PR m_TRQ]_gJ) FALSE
iii. If f is decreasing and g is decreasing, then h is decreasing. TRUE (FALSE

SEE th) Eo~r Proo & ine. o

iv. If f is increasing and g is increasing, then A is increasing. (TRUE FALSE
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(b) 8 pts) Let f: A— B, g: B— C, and h — go f: A — C be functions. Consider the
following theorem. Theorem: If h is injective, then f is injective.
Now is your chance to be a proof grader. Of the four “proofs” below, only ONE is correct.

Tell me which proof is correct and for each of the other proofs give a specific reason
that the proof is incorrect.

(‘Proof’ 1) Let z1,25 € A such that h(z;) = h(zs). Since h is injective, z1 = z5. Since f is
well-defined, f(z1) = f(x2). Thus, we have f(z;) = f(z3) and 21 = zo. O

(‘Proof’ 2) Let 21,25 € A such that f(z;) = f(z,). Since g is well-defined, a(f(z1)) = g(f(z2)).
By definition, h(z1) = h(zs). Since h is injective, 21 = xq. [

(‘Proof’ 3) Let z1,29 € A such that z; = z5. Since [ is well-defined, f(z;) = f(z2). Since g is
well-defined, g(f(z1)) = g(f(z2)). By definition, h(z;) = h(z,). Since h is injective, 7, = z5. [J

(‘Proof’” 4) Let z1,25 € A such that f(z;) = f(zy). Since g is well-defined, 9(f(z1)) = g(f(x2)).
Since h is injective, f(z1) = f(22). Since f(z1) = f(z3), we have 21 = z5. [J
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CHECK YOUR TIME! LEAVE 20 MINUTES FOR THE LAST PAGE!

3. (a) (13 pts) Consider the sequence defined by a1 = 2, ay = 12, and a, = a,_1an_s + 20a,_o for
n 2 3. Using the precise phrasing for strong 1nduct10n prove that 2" divides a,, for all n € N.
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(b) (10 pts) Let f: R — R be a function. Prove if f is increasing, then f is injective.
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4., (a) (10 pts) Let f: R — R be a function for which there exists positive real numbers a and b
such that

a(f(z) = f(y)) —b>z —y for all z,y € R.
Prove that f is increasing on R.
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(b) (12 pts) Let f: A—B,g: B— C,and h=go f: A — C be functions.
Prove that if g is bijective and A is bijective, then f is surjective. (Be very clear about the
order, justifications and sets you are referring to in your proof)
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