(1% pts)

Y (a) Find parametric equations for the line of intersection of the two planes 2z — y+ 8z = 14 and
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2 (b) Consider the curve y = 10+ 4z — 2% at {z,y) = (3,13).
i. Find a vector, v, that has length 4 and is parallel to the tangent line to y = 10+ 4z —

at x = 3. e - .
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3 i Find the length of the projection of a = (0, —9.8} onto v, from part (i).
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2. (14 pts)
vt (a) Find the equation for the plane that is orthogonal to the plane 4z — z = 10 and LOHT&IDS the

points P(3,2,3) and Q(4,5,1). S e [é? R R, =< 73
-1

PRArzaLLEL To Desias 7 4 9,
PLANE ¥y \j 3} -2

= (g-"3)T - (~8-"D3 + (12-0O%
= <3, 312D ="

L2 (x=D r FyD v (- = 0
2w -9 +?ﬂ-—|~’c+\'&1-—35=6
3%*"?? +l22 = 59

b} Find an equation for the surface consisting of all points (¥, z) such that the distance from
& _
(z,y,2) to (0,0,2) is equal to the distance from (z,y,2) to the zy-plane. AND give the

precise name for this surface (Hint: Expand/Simplify your equation!)
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¢ (¢) In the picture below, u, v, and w are all vectors of length 3 (z.e. ju| = |v| = |w| =3). The
vectors form an equilateral triangle (as shown). Using this information and important facts

from class, find the following values:
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3. (13 pts) For ALL parts helow, consider the curve, C, given by t =5 —t, y =1, 2z = 2 — 10

¢f (a) Find the two points (z,v, z) where the curve, C, intersects the cylinder % + 32 =13

3 (b) Find parametric equations for the tangent line, L, to the curve, C, at £ = 1.
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6 (c) Consider a different line L, given by £ = —2+6u, y = 2+4u, and z = 5 + 2u. This line, Ly,
and the curve, C, intersect in one point. Find the angle of intersection (round your answer

to the nearest degree).
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4. (12 pts) For ALL parts below, consider the curve given by the position function r(t) = (t7, 3¢%, 61).

o _{a) Multiple Choice (Circle ALL that are true, there may be more than one):
Every point on the curve is also on the surface:

Circle ALL that true: { (i) 18z =yz) (i) y?+22 =1 (iv)y—2=0

57(h) Find the curvature, k, of r{t) at ¢ = 0. (Reminder: You don't need to find the general
formula, only the value at £ =0.)
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& (c) Find the distance {arc length) along the curve r(t) from the point (0,0,0) to (1,3,6).
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