Exam 2
February 3, 2015

Name: \qquad

Section: \qquad
Student ID Number:

PAGE 1	12	
PAGE 2	14	
PAGE 3	13	
PAGE 4	11	
Total	50	

- There are 4 pages of questions. Make sure your exam contains all these questions.
- You are allowed to use a scientific calculator (no graphing calculators and no calculators that have calculus capabilities) and one hand-written 8.5 by 11 inch page of notes.
- You must show your work on all problems. The correct answer with no supporting work may result in no credit. Put a box around your FINAL ANSWER for each problem and cross out any work that you don't want to be graded. Give exact answers wherever possible.
- If you need more room, use the backs of the pages and indicate to the grader that you have done so.
- Raise your hand if you have a question.
- There may be multiple versions of the exam so if you copy off a neighbor and put down the answers from another version we will know you cheated. Any student found engaging in academic misconduct will receive a score of 0 on this exam. All suspicious behavior will be reported to the student misconduct board. In such an instance, you will be force to meet in front of a board of professors to explain your actions.
DO NOT CHEAT OR DO ANYTHING THAT LOOKS SUSPICIOUS!
WE WILL REPORT YOU AND YOU MAY BE EXPELLED!
- You have 50 minutes to complete the exam. Budget your time wisely.

SPEND NO MORE THAN 10 MINUTES PER PAGE!

1. A particle is moving in such a way that it's acceleration is given by $\mathbf{a}(t)=\left\langle 0, e^{t}, 6 \cos (2 t)\right\rangle$. The initial velocity is $\mathbf{v}(0)=\langle 0,3,0\rangle$ and the initial position is $\mathbf{r}(0)=\langle 1,0,1\rangle$.
(a) (6 pts) Find the position vector, $\mathbf{r}(t)$.
(b) (4 pts) Find the normal component of acceleration of $\mathbf{r}(t)$ at $t=0$.
(c) (2 pts) For the curve $\mathbf{r}(t)$, the binormal, $\mathbf{B}(t)$, is always parallel to one of the axes. (Circle the correct one).
i. $\mathbf{B}(t)$ is always parallel to the x-axis.
ii. $\mathbf{B}(t)$ is always parallel to the y-axis.
iii. $\mathbf{B}(t)$ is always parallel to the z-axis.
2. (a) Consider the surface defined implicitly by the equation $x z^{3}=8(\sin (x y)+1)$.
i. (5 pts) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the point $(1,0,2)$.
ii. (3 pts) Use the linear approximation at $(1,0,2)$, to estimate the z-value on the surface that corresponds to $x=1.1$ and $y=-0.2$.
(b) (6 pts) Consider the region of integration for the double integral that looks like:

$$
\int_{0}^{3} \int_{(y-1) / 2}^{1} f(x, y) d x d y
$$

Draw the region of integration. And give the equivalent double integral in the reverse order.
3. (a) (6 pts) Find the volume of the solid bounded by the surfaces $y=2 x, y=x^{2}, z=0$, and $z=6 y$.
(b) (7 pts) Using a double integral in polar coordinates, find the area of the region in the first quadrant that is outside of $x^{2}+y^{2}=2$ and inside the circle $x^{2}+y^{2}=2 y$. (You must set up and evaluate a double integral in polar coordinates for full credit).

4. Let $z=f(x, y)=x^{2}+4 y-x^{2} y+1$. Use this function to answer both parts below.
(a) (5 pts) Find and classify all critical points. (Show your use of the 2 nd derivative test).
(b) (6 pts) Let R be the region in the $x y$-plane consisting of all points bounded by $y=2-\frac{1}{2} x^{2}$ and the x-axis. Find the global minimum and maximum of $f(x, y)$ over the region R.

