1 (8 points) Let $\mathbf{r}(t)=(2 t-1) \mathbf{i}+t^{2} \mathbf{j}+2 \sqrt{t} \mathbf{k}$. Find all times t when the tangential component of acceleration is zero.

The tangential component of acceleration at time t is $a_{T}=\frac{\mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime \prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}$.
Thus $a_{T}=0$ when $\mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime \prime}(t)=0$.

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime \prime}(t) & =\left\langle 2,2 t, t^{-1 / 2}\right\rangle \cdot\left\langle 0,2,-\frac{1}{2} t^{-3 / 2}\right\rangle \\
& =4 t-\frac{1}{2} t^{-2}
\end{aligned}
$$

Solving $4 t-\frac{1}{2} t^{-2}=0$ gives $8 t^{3}-1=0$ so $t=\frac{1}{2}$ is the only solution.

2 (6 points) Find the equation of the tangent plane of the function $F(x, y)=\frac{3 y-2}{5 x+7}$ at the point ($-1,1$).
$F_{x}(x, y)=-5 \cdot \frac{3 y-2}{(5 x+7)^{2}} \quad$ so $F_{x}(-1,1)=-\frac{5}{4}$
$F_{y}(x, y)=\frac{3}{5 x+7}$ so $F_{y}(-1,1)=\frac{3}{2}$
$F(-1,1)=\frac{1}{2}$
The equation of the tangent plane is $\quad z-\frac{1}{2}=-\frac{5}{4}(x+1)+\frac{3}{2}(y-1)$

3 (14 points) Evaluate the following double integrals.
(a) (7 points) $\quad \iint_{R} x y \sin \left(x^{2} y\right) d A, \quad R=[0,1] \times[0, \pi / 2]$

Use Fubini's theorem to conver this to an iterated integral.

$$
\begin{aligned}
\iint_{R} x y \sin \left(x^{2} y\right) d A & =\int_{0}^{\pi / 2} \int_{0}^{1} x y \sin \left(x^{2} y\right) d x d y \\
& =\int_{0}^{\pi / 2}\left(-\left.\frac{1}{2} \cos \left(x^{2} y\right)\right|_{x=0} ^{1}\right) d y \\
& =\int_{0}^{\pi / 2} \frac{1}{2}-\frac{1}{2} \cos (y) d y \\
& =\frac{1}{2} y-\left.\frac{1}{2} \sin (y)\right|_{y=0} ^{\pi / 2} \\
& =\frac{\pi}{4}-\frac{1}{2}
\end{aligned}
$$

(b) (7 points) $\iint_{D} y^{2} e^{x y} d A, \quad D=\{(x, y) \mid 0 \leq y \leq 3,0 \leq x \leq y\}$

$$
\begin{aligned}
\iint_{D} y^{2} e^{x y} d A & =\int_{0}^{3} \int_{0}^{y} y^{2} e^{x y} d x d y \\
& =\int_{0}^{3}\left(\left.y e^{x y}\right|_{x=0} ^{y}\right) d y \\
& =\int_{0}^{3} y e^{y^{2}}-y d y \\
& =\frac{1}{2} e^{y^{2}}-\left.\frac{1}{2} y^{2}\right|_{y=0} ^{3} \\
& =\frac{1}{2} e^{9}-5
\end{aligned}
$$

(12 points) You wish to build a rectangular box with no top with volume $6 \mathrm{ft}^{3}$. The material for the bottom is metal and costs $\$ 3.00$ a square foot. The sides are wooden and cost $\$ 2.00$ a square foot. Calculate the dimesnsions of the box with minimum cost. Use the Second Derivative test to verify that your answer is indeed a minimum.

Label the sides as shown. The cost is $C=3 x y+4 x z+4 y z$. The volume constraint is $x y z=6$. From the constraint we get $z=\frac{6}{x y}$. Substituting into the cost function gives the objective function $C(x, y)=3 x y+\frac{24}{y}+\frac{24}{x}$.
Now calculate the partial derivatives and set them equal to zero.
$C_{x}(x, y)=3 y-\frac{24}{x^{2}}=0 \quad$ gives $\quad y=\frac{8}{x^{2}}$.
$C_{y}(x, y)=3 x-\frac{24}{y^{2}}=0 \quad$ gives $\quad x=\frac{8}{y^{2}}$.
Combining, we get $x=\frac{8}{\left(8 / x^{2}\right)^{2}}$ or $8 x=x^{4}$. The solutions are $x=0,2$ but $x=0$ makes no sense and can be discarded. If $x=2$ and $y=\frac{8}{x^{2}}$ we get $y=2$ as well. Since $x y z=6$ it follows that $z=\frac{3}{2}$.
The dimensions of the box are $2 \times 2 \times \frac{3}{2}$.
To verify that this is gives the minimum cost, we must compute the second derivatives.
$C_{x x}(2,2)=\left.\frac{48}{x^{3}}\right|_{x=2}=6$
$C_{y y}(2,2)=\left.\frac{48}{y^{3}}\right|_{y=2}=6$
$C_{x y}(x, y)=3$
Thus the Hessian determinant is $6 \cdot 6-3 \cdot 3>0$. Since $C_{x x}(2,2)>0$, the point $(2,2)$ gives a minimum of the cost function by the Second Derivative Test.

5 (10 points) A table of values is given for a function $g(x, y)$ defined on $R=[0,1] \times[1,4]$. (For example, $g(1,4)=9.4$.) Use the table to find a linear approximation to $g(x, y)$ near $(0.5,3)$. Use it to approximate $g(0.6,2.8)$. Carefully explain all your reasoning.

	1	1.5	2	2.5	3	3.5	4
0	1	1.8	2.8	3.9	5.2	6.5	8.0
0.25	1.2	1.9	2.9	4.0	5.3	6.6	8.2
0.5	1.4	2.1	3.1	4.2	5.5	6.8	8.5
0.75	1.6	2.2	3.3	4.5	5.8	7.0	8.9
1	1.7	2.3	3.6	4.8	6.1	7.3	9.4

We need to approximate the partial derivatives $g_{x}(0.5,3)$ and $g_{y}(0.5,3)$. There are several correct ways to do this. I will choose one.
I approximate $g_{x}(0.5,3)$ with the slope of the secant line from $(0.5,3,5.5)$ to $(0.75,3,5.8)$.
The slope is $\frac{\Delta z}{\Delta x}=\frac{5.8-5.5}{0.75-0.5}=1.2$.
I approximate $g_{y}(0.5,3)$ with the slope of the secant line from $(0.5,3,5.5)$ to $(0.5,2.5,4.2)$.
The slope is $\frac{\Delta z}{\Delta y}=\frac{4.2-5.5}{2.5-3}=2.6$.
The linear approximation $L(x, y)=5.5+1.2(x-0.5)+2.6(y-3)$.
$L(0.6,2.8)=5.5+1.2 \cdot 0.1-2.6 \cdot 0.2=5.1$

