Your Name

Your Signature
\square

Student ID \#

	Luke		Chris	
Section	$11: 30$	$12: 30$	$11: 30$	$12: 30$
(circle one)	CA	CB	CC	CD

Problem	Total Points	Score
1	8	
2	6	
3	14	
4	12	
5	10	
Total	50	

- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of notes.
- Graphing calculators are not allowed.
- In order to receive credit, you must show your work. Explain why your answers are correct.
- If you use a trial and error (or guess and check) method when a calculus method is available, you will not receive full credit.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

1 (8 points) Let $\mathbf{r}(t)=(2 t-1) \mathbf{i}+t^{2} \mathbf{j}+2 \sqrt{t} \mathbf{k}$. Find all times t when the tangential component of acceleration is zero.

2 (6 points) Find the equation of the tangent plane of the function $F(x, y)=\frac{3 y-2}{5 x+7}$ at the point $(-1,1)$.

3 (14 points) Evaluate the following double integrals.
(a) (7 points) $\quad \iint_{R} x y \sin \left(x^{2} y\right) d A, \quad R=[0,1] \times[0, \pi / 2]$
(b) (7 points) $\quad \iint_{D} y^{2} e^{x y} d A, \quad D=\{(x, y) \mid 0 \leq y \leq 3,0 \leq x \leq y\}$

4 (12 points) You wish to build a rectangular box with no top with volume $6 \mathrm{ft}^{3}$. The material for the bottom is metal and costs $\$ 3.00$ a square foot. The sides are wooden and cost $\$ 2.00$ a square foot. Calculate the dimesnsions of the box with minimum cost. Use the Second Derivative test to verify that your answer is indeed a minimum.

5 (10 points) A table of values is given for a function $g(x, y)$ defined on $R=[0,1] \times[1,4]$. (For example, $g(1,4)=9.4$.) Use the table to find a linear approximation to $g(x, y)$ near $(0.5,3)$. Use it to approximate $g(0.6,2.8)$. Carefully explain all your reasoning.

	1	1.5	2	2.5	3	3.5	4
0	1	1.8	2.8	3.9	5.2	6.5	8.0
0.25	1.2	1.9	2.9	4.0	5.3	6.6	8.2
0.5	1.4	2.1	3.1	4.2	5.5	6.8	8.5
0.75	1.6	2.2	3.3	4.5	5.8	7.0	8.9
1	1.7	2.3	3.6	4.8	6.1	7.3	9.4

