MATH 126 - EXAM II Hints and Answers
 Version Alpha
 Autumn 2009

1. (a) (7 points) HINT: $r^{\prime}(2)=\langle 4,-2,6\rangle$ and $r^{\prime \prime}(2)=\langle 2,1,1\rangle$.

ANSWER: $a_{T}=\frac{12}{\sqrt{56}}$ and $a_{N}=\frac{8 \sqrt{3}}{\sqrt{56}}$
(b) (3 points) ANSWER: $4(x-4)-2(y+5)+6(z-10)=0$ OR $4 x-2 y+6 z=86$ OR $2 x-y+3 z=43$
2. (a) (4 points) HINT: $f_{y}(x, y)=-e^{-x y}(\sin y+x \cos y)$

ANSWER: $f_{y x}(x, y)=-e^{-x y}(\cos y-y \sin y-x y \cos y)$
(b) (4 points) HINT: $f_{x}(x, y)=-y e^{-x y} \cos y$. So, $f_{x}(\pi, 0)=0$ and $f_{y}(\pi, 0)=-\pi$. The tangent plane is the plane with normal vector $\langle 0,-\pi,-1\rangle$ that contains the point $(\pi, 0, f(\pi, 0))=(\pi, 0,1)$.
ANSWER: $-\pi(y-0)-1(z-1)=0$ OR $z=1-\pi y$
(c) (2 points) ANSWER: $f(3.15,0.001) \approx 1-0.001 \pi \approx 0.9968584$
3. (a) (8 points) HINT: $g_{x}(x, y)=x+y-3$ and $g_{y}(x, y)=x+y^{2}-3$.

ANSWER: There is a saddle point at $(3,0)$ and a local minimum at $(2,1)$.
(b) (2 points) HINT: $g(x, 0)=\frac{1}{2} x^{2}-3 x$, a quadratic whose graph is a parabola that opens up. Its vertex occurs at $x=3$.
ANSWER: $g(3,0)=-\frac{9}{2}$
4. HINT: You must change the order of integration! With the current order, you have $0 \leq x \leq$ $\sqrt{\pi / 2}$ and $x \leq y \leq \sqrt{\pi / 2}$. This means, the region over which you are integrating is the triangle bounded on the left by the y-axis $(x=0)$, below by the line $y=x$ and above by the line $y=\sqrt{\pi / 2}$.
Then, we have:

$$
\int_{0}^{\sqrt{\pi / 2}} \int_{x}^{\sqrt{\pi / 2}} \cos \left(y^{2}\right) d y d x=\int_{0}^{\sqrt{\pi / 2}} \int_{0}^{y} \cos \left(y^{2}\right) d x d y
$$

ANSWER: $\frac{1}{2}$
5. HINT: Convert to polar:

$$
\iint_{D} \frac{x y e^{x}}{\left(x^{2}+y^{2}\right)^{3 / 2}} d A=\int_{0}^{\pi / 2} \int_{0}^{3} \cos \theta \sin \theta e^{r \cos \theta} d r d \theta
$$

ANSWER: $\frac{1}{3} e^{3}-\frac{4}{3}$

