Exam II
November 24, 2009

Name \qquad
Student ID \# \qquad Section \qquad

HONOR STATEMENT

"I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam."

SIGNATURE:

1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

- Your exam should consist of this cover sheet, followed by five problems. Check that you have a complete exam.
- Show all work and justify your answers.
- Unless otherwise indicated, your answers should be exact values rather than decimal approximations. (For example, $\frac{\pi}{4}$ is an exact answer and is preferable to its decimal approximation 0.7854.)
- You may use a scientific calculator and one 8.5×11-inch sheet of handwritten notes. All other electronic devices (including graphing calculators) are forbidden.
- Turn your cell phone OFF and put it AWAY for the duration of the exam.
- There are multiple versions of this exam. Save yourself the hassle of a hearing before the Faculty Council on Academic Conduct: do not cheat.

1. (10 points) Suppose a particle moves with position vector

$$
\mathbf{r}(t)=t^{2} \mathbf{i}+\left(e^{t-2}-3 t\right) \mathbf{j}+\left(\frac{1}{2} t^{2}+4 t\right) \mathbf{k} .
$$

(a) Compute the tangential and normal components of the particle's acceleration vector at $t=2$.
(b) Find the equation of the normal plane to $\mathbf{r}(t)$ at $t=2$.
2. (10 points) Let $f(x, y)=e^{-x y} \cos y$.
(a) Compute $f_{y x}(x, y)$.
(b) Find the equation of the plane tangent to $f(x, y)$ at $(\pi, 0)$.
(c) Use linear approximation to approximate $f(3.15,0.001)$. (Give an exact answer and a decimal approximation, giving at least four digits after the decimal.)
3. (10 points) Let $g(x, y)=\frac{1}{2} x^{2}+x y-3 x+\frac{1}{3} y^{3}-3 y$.
(a) Find and classify all critical points of $g(x, y)$.
(b) What is the smallest value of the function $g(x, 0)$?
4. (10 points) Evaluate the integral

$$
\int_{0}^{\sqrt{\pi / 2}} \int_{x}^{\sqrt{\pi / 2}} \cos \left(y^{2}\right) d y d x
$$

5. (10 points) Evaluate the integral

$$
\iint_{D} \frac{x y e^{x}}{\left(x^{2}+y^{2}\right)^{3 / 2}} d A
$$

where $D=\left\{(x, y): x^{2}+y^{2} \leq 9, x \geq 0, y \geq 0\right\}$.

