Exam I
October 27, 2009

Name \qquad
Student ID \# \qquad Section \qquad

HONOR STATEMENT
"I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam."

SIGNATURE:

\qquad

1	8	
2	8	
3	8	
4	8	
5	6	
6	6	
7	6	
Total	50	

- Your exam should consist of this cover sheet, followed by seven problems. Check that you have a complete exam.
- Show all work and justify your answers.
- Unless otherwise indicated, your answers should be exact values rather than decimal approximations. (For example, $\frac{\pi}{4}$ is an exact answer and is preferable to its decimal approximation 0.7854.)
- You may use a scientific calculator and one 8.5×11-inch sheet of handwritten notes. All other electronic devices (including graphing calculators) are forbidden.
- Turn your cell phone OFF and put it AWAY for the duration of the exam.

1. (8 points) Find parametric equations for the line of intersection of the planes

$$
3 x-2 y+z=1 \quad \text { and } \quad 2 x+y-3 z=3 .
$$

2. (8 points) Let \mathcal{P} be the plane that passes through the point $(3,4,3)$ and contains the line

$$
x=1-2 t, y=3 t, z=-2+t .
$$

Find a vector \vec{v} orthogonal to \mathcal{P} that has length 10 .
3. (8 points) Let ℓ be the line tangent to the curve

$$
\vec{r}(t)=\left\langle 1+2 \sqrt{t}, t^{3}+t, t^{3}-t\right\rangle
$$

at the point $(3,2,0)$. Find the point at which ℓ intersects the $y z$-plane.
4. (8 points) Match each equation to the correct polar curve. (You do NOT need to show any work or justify your answers.)
(a) $r=3 \sin \theta$
(b) $r=\sin 3 \theta$
(c) $r=2-2 \sin \theta$
(d) $r=2-\sin \theta$

ANSWER: \qquad ANSWER: \qquad

ANSWER: \qquad ANSWER: \qquad
5. (6 points) Let $\vec{r}(t)=\langle 5 \cos t, t, 3 \sin t\rangle$. Compute $\vec{r}^{\prime}(\pi), \vec{r}^{\prime \prime}(\pi)$, and the curvature at $t=\pi$.
6. (6 points) A particle travels in the $x y$-plane so that its position (x, y) at time t is given by

$$
x=3 \cos ^{2} t, y=-\sin ^{2} t .
$$

Find the distance the particle travels on the interval $0 \leq t \leq 5 \pi$.
7. (6 points)
(a) Find an equation for the set of all points $P(x, y, z)$ such that the distance from P to the $x y$-plane is twice the distance from P to the point $A(2,-1,3)$.
(b) What type of surface does this set of points form (e.g., a sphere, a cylinder, a paraboloid, etc.)? (HINT: Reduce your equation to one of the standard forms to justify your answer.)

