1 (5 points) Calculate the equation of the tangent line to the curve $r=1+2 \cos (\theta)$ at the point where $\theta=\pi / 2$. Give your equation in terms of x and y.

Point: $r=1+x \cos \pi / 2=1, \quad x=r \cos \theta=1 \cdot \cos \pi / 2=0, \quad y=r \sin \theta=1 \cdot \sin \pi / 2=1$
Slope: $x=r \cos \theta=(1+2 \cos \theta) \cos \theta, \quad d x / d \theta=-2 \sin \theta \cos \theta-(1+2 \cos \theta) \sin \theta$.
At $\theta=\pi / 2$ we have $d x / d \theta=-1$.
$y=r \sin \theta=(1+2 \cos \theta) \sin \theta, \quad d x / d \theta=-2 \sin ^{2} \theta+(1+2 \cos \theta) \cos \theta$.
At $\theta=\pi / 2$ we have $d y / d \theta=-2$.
$\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=2$
Line: $y-1=2 x$

2 (5 points) Compute the distance from the point $(3,2,1)$ to the plane $x+2 y+3 z=1$.

Plug in $y=0$ and $z=0$ to get the point $(1,0,0)$ on the plane.
(Any point on the plane will do.)
Let \mathbf{v} be the vector from $(1,0,0)$ to $(3,2,1)$. Then $\mathbf{v}=\langle 2,2,1\rangle$.
The distance from $(3,2,1)$ to the plane is the magnitude of the projection of \mathbf{v} onto $\mathbf{N}=\langle 1,2,3\rangle$, the normal vector of the plane.
distance $=\frac{\mathbf{v} \cdot \mathbf{N}}{|\mathbf{N}|}=\frac{2 \cdot 1+2 \cdot 2+1 \cdot 3}{\sqrt{1^{2}+2^{2}+3^{2}}}=\frac{9}{\sqrt{14}}$.

3 (8 points) Compute parametric equations for the line that contains the point $(-1,2,-3)$ and is parallel to both of the planes $2 x-y=3$ and $x-2 y+3 z=2$.

The direction vector is $\langle 2,-1,0\rangle \times\langle 1,-2,3\rangle=\langle-3,-6,-3\rangle$.
Any nonzero scalar multiple will work so I'll use $\langle 1,2,1\rangle$.
The parametric equations are

$$
\left\{\begin{array}{l}
x=t-1 \\
y=2 t+2 \\
z=t-3
\end{array}\right.
$$

4 (6 points) Find a vector function $\mathbf{r}(t)$ that represents the curve of intersection of the surfaces $4 x^{2}+(z-1)^{2}=9$ and $y=3 x^{2}$.

Rewrite the first equation as $\left(\frac{2 x}{3}\right)^{2}+\left(\frac{z-1}{3}\right)^{2}=1$.
So set $\frac{2 x}{3}=\cos (t)$ and $\frac{z-1}{3}=\sin (t)$.
We have $y=3 \cdot\left[\frac{3}{2} \cos (t)\right]^{2}$
The vector function is $\quad \mathbf{r}(t)=\left\langle\frac{3}{2} \cos (t), \frac{27}{4} \cos ^{2}(t), 3 \sin (t)+1\right\rangle$.

5 (12 points) Let $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t^{3}-2 t\right\rangle$.
(a) (6 points) Compute the curvature κ at the point $(-1,1,1)$.

The point $(-1,1,1)$ is at $t=-1$.
$\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}, 2 t, 3 t^{2}-2\right\rangle$ so $\mathbf{r}^{\prime}(-1)=\langle 3,-2,1\rangle$.
$\mathbf{r}^{\prime \prime}(t)=\langle 6 t, 2,6 t\rangle$ and $\mathbf{r}^{\prime \prime}(-1)=\langle-6,2,-6\rangle$.
Then $\mathbf{r}^{\prime}(-1) \times \mathbf{r}^{\prime \prime}(-1)=\langle 10,12,-6\rangle$ and
$\kappa(-1)=\frac{\left|\mathbf{r}^{\prime}(-1) \times \mathbf{r}^{\prime \prime}(-1)\right|}{\left|\mathbf{r}^{\prime}(-1)\right|^{3}}=\frac{\sqrt{280}}{(\sqrt{14})^{3}}=\frac{\sqrt{5}}{7} \approx 0.32$.
(b) (6 points) Find the arclength of this curve between the points $(-1,1,1)$ and $(1,1,-1)$. Set up the integral, but do not evaluate.

The point $(1,1,-1)$ is at $t=1$.
We use the arc length formula $s=\int_{-1}^{1}\left|\mathbf{r}^{\prime}(t)\right| d t$.
The integral is $\int_{-1}^{1} \sqrt{\left(3 t^{2}\right)^{2}+(2 t)^{2}+\left(3 t^{2}-2\right)^{2}} d t$.
This can be simplified to $\int_{-1}^{1} \sqrt{18 t^{4}-8 t^{2}+4} d t$.

6 (8 points) Find the exact coordinates of the lowest point on the curve in \mathbf{R}^{2} given by the parametric equations $x=2 \cos (t)+\sin (t), \quad y=\sin (t)-\cos (t)$.

Solve $\frac{d y}{d t}=\cos (t)+\sin (t)=0 \quad \sin (t)=-\cos (t) \quad \tan (t)=-1$.
This means $t=-\frac{\pi}{4}$ or $\frac{3 \pi}{4}$.
Note that $\frac{d x}{d t}=-2 \sin (t)+\cos (t)$ is non-zero at these values.
You can tell from the picture that the minimum is at $t=-\frac{\pi}{4}$.
Here $x=2 \cos (-\pi / 4)+\sin (-\pi / 4)=\frac{\sqrt{2}}{2}$ and $y=\sin (-\pi / 4)-\cos (-\pi / 4)=-\sqrt{2}$.

7 (6 points) A particle in \mathbf{R}^{3} has position function $\mathbf{r}(t)=\left\langle 2 t^{3}+1, t^{2}, 3 t-t^{2}\right\rangle$. Find the speed of the particle when $t=2$.

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\left\langle 6 t^{2}, 2 t, 3-2 t\right\rangle \\
\mathbf{r}^{\prime}(2) & =\langle 24,4,-1\rangle \\
\left|\mathbf{r}^{\prime}(2)\right| & =\sqrt{24^{2}+4^{2}+(-1)^{2}} \\
& =\sqrt{593}
\end{aligned}
$$

