Math 126 C - Spring 2010
 Mid-Term Exam Number Two
 May 13, 2010

Name: \qquad Student ID no. : \qquad

Signature:

\qquad Section: \qquad

1	10	
2	10	
3	20	
4	10	
Total	50	

- Complete all questions.
- You may use a scientific calculator during this examination; graphing calculators and other electronic devices are not allowed and should be turned off for the duration of the exam.
- If you use trial-and-error, a guess-and-check method, or numerical approximation when an exact method is available, you will not receive full credit.
- You may use one double-sided, hand-written, 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have 50 minutes to complete the exam.

1. A particle moves along a curve in the $x y$-plane so that its position vector is

$$
\vec{r}(t)=\langle t+\cos t, t-\sin t\rangle
$$

for $t \geq 0$. Assume t is in seconds, and coordinates are in centimeters.
(a) Find the speed of the particle at time $t=\pi$.
(b) There are infinitely many times t when the velocity vector and the acceleration vector for this particle are orthogonal. Give one of these times.
2. Find the curvature of the curve

$$
x=t^{2}, y=1-t, z=1-t^{2}
$$

at the point $t=3$.
3. Let

$$
f(x, y)=\frac{1}{x}+\frac{1}{y}+x+y
$$

(a) Find a point on the surface $z=f(x, y)$ where the tangent plane is parallel to the plane $48 x+6 y+2 z=7$.
(b) Find and classify all critical points of the surface $z=f(x, y)$.
4. Let R be the region in the first quadrant of the $x y$-plane bounded by $y=6-x, y=6-2 x$, and the x-axis.
Express the volume of three-dimensional space lying above R and below the surface

$$
z=x y
$$

as one iterated double integral.

