Math 126 C - Spring 2008

Mid-Term Exam Number One
April 24, 2008

Name: \qquad Section: \qquad

1	20	
2	20	
3	10	
4	20	
5	10	
Total	80	

- Complete all questions.
- You may use a scientific, non-graphing calculator during this examination. Other electronic devices are not allowed, and should be turned off for the duration of the exam.
- If you use a trial-and-error or guess-and-check method, or read a numerical solution from a graph on your calculator, when an algebraic method is available, you will not receive full credit.
- You may use one hand-written 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have 50 minutes to complete the exam.

1. Let $f(x)=\frac{1}{3-\frac{1}{4} x}$.
(a) Find the second-order Taylor polynomial $T_{2}(x)$ for $f(x)$ based at $b=0$.
(b) Give a bound on the error

$$
\left|f(x)-T_{2}(x)\right|
$$

for $-0.5 \leq x \leq 0.5$.
2. Let

$$
h(x)=\int_{0}^{x} t \cos t^{3} d t
$$

(a) Find the first four non-zero terms of the Taylor series based at $b=0$ for $h(x)$.
(b) Use your answer to part (a) to compute $h^{(20)}(0)$.
3. Find the first three non-zero terms of the Taylor series for

$$
g(x)=\frac{x}{2+x^{2}}
$$

4. Consider the polar curve defined by the equation

$$
r=\theta(12-\theta)
$$

for $0 \leq \theta \leq 12$. The curve is shown in the figure below.

(a) Find the slope of the tangent line to this curve at $\theta=\frac{\pi}{2}$.
(b) Find the value of θ corresponding to the self-intersection point indicated by the arrow.
5. There are infinitely many unit vectors which are orthogonal to the vector $\langle 3,-2,4\rangle$. Give an example of one of them.

