Math 126 C - Spring 2007
 Mid-Term Exam Number One Solutions
 April 19, 2007

1. Let $f(x)=e^{x} \sin x$.
(a) Find the second-order Taylor polynomial $T_{2}(x)$ for $f(x)$ based at $b=0$.

$$
T_{2}(x)=x+x^{2}
$$

(b) Give a bound on the error $\left|f(x)-T_{2}(x)\right|$ for x in the interval $-0.1 \leq x \leq 0.1$.

We may use the fact that

$$
\left|f^{\prime \prime \prime}(x)\right|=\left|2 e^{x}(\cos x-\sin x)\right| \leq 4 e^{x} \leq 4 e^{0.1}
$$

on the interval $-0.1 \leq x \leq 0.1$, so the error is no more than

$$
\frac{4 e^{0.1}}{3!}|0.1|^{3}=0.005894 \ldots .
$$

2. Find the first four non-zero terms of the Taylor series for

$$
f(x)=x e^{x^{2}}-\frac{1}{4+x^{2}}
$$

based at $b=0$.
Since

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

for all x, we have

$$
e^{x^{2}}=1+x^{2}+\frac{x^{4}}{2!}+\frac{x^{6}}{3!}+\cdots
$$

and

$$
x e^{x^{2}}=x+x^{3}+\frac{x^{5}}{2!}+\frac{x^{7}}{3!}+\cdots
$$

Also,

$$
\frac{1}{4+x^{2}}=\left(\frac{1}{4}\right) \frac{1}{1-\left(-\left(\frac{x}{2}\right)^{2}\right)}=\frac{1}{4} \sum_{k=0}^{\infty}\left(-\left(\frac{x}{2}\right)^{2}\right)^{k}=\frac{1}{4}-\frac{x^{2}}{4 \cdot 4}+\frac{x^{4}}{4 \cdot 2^{4}}-\frac{x^{6}}{4 \cdot 2^{6}}+\cdots
$$

Combining these results yields

$$
f(x)=-\frac{1}{4}+x+\frac{x^{2}}{4 \cdot 4}+x^{3}+\cdots
$$

3. Find the equation of the plane containing the line of intersection of the two planes

$$
x+y+z+5=0 \text { and } 3 x+2 y-z+2=0
$$

and the point $(1,2,1)$.
We find the direction vector of the line of intersection: it is the cross product of the planes' normal vectors

$$
\langle 1,1,1\rangle \times\langle 3,2,-1\rangle=\langle-3,4,-1\rangle
$$

Then we need a point on the line (which is hence on the plane we seek). Choosing $x=0$, we can find the point

$$
\left(0,-\frac{7}{3},-\frac{8}{3}\right)
$$

on the line. The vector extending from this point to $(1,2,1)$ (the other point we know is on the plane) is

$$
\left\langle 1, \frac{13}{3}, \frac{11}{3}\right\rangle
$$

or, equivalently (since direction is all we need here)

$$
\langle 3,13,11\rangle .
$$

The normal vector of the plane we seek is then

$$
\langle 3,13,11\rangle \times\langle-3,4,-1\rangle=\langle-57,-30,51\rangle
$$

and so the equation of the plane is

$$
-57 x-30 y+51 z+d=0
$$

Since $(1,2,1)$ is on the line, we can find $d=66$, so the plane is

$$
-57 x-30 y+51 z+66=0
$$

4. Find the point of intersection of the two lines

$$
x=4-t, y=6+2 t, z=-1+3 t \text { and } x=1+2 t, y=14-8 t, z=7-4 t
$$

Suppose (a, b, c) is the point of intersection. Then there is a t value, say t_{1} such that

$$
a=4-t_{1}, b=6+2 t_{1}, c=-1+3 t_{1}
$$

and a t value, say t_{2} such that

$$
a=1+2 t_{2}, b=14-8 t_{2}, c=7-4 t_{2} .
$$

Hence, we have

$$
4-t_{1}=1+2 t_{2}
$$

and

$$
6+2 t_{1}=14-8 t_{2}
$$

This is a pair of equations in two unknowns which we can solve to get $t_{1}=2$ and $t_{2}=\frac{1}{2}$. This then gives us the point of intersection

$$
(4-2,6+2 \cdot 2,-1+3 \cdot 2)=(2,10,5)
$$

5. Let S be the surface defined as the set of points p (in three-dimensional space) such that the distance from p to the plane $y=5$ equals the distance from p to the line

$$
y=1, z=2
$$

(a) Find an equation for S.

The distance from a point (x, y, z) to the plane $y=5$ is

$$
|y-5|
$$

and the distance from (x, y, z) to the line $y=1, z=2$ is

$$
\sqrt{(y-1)^{2}+(z-2)^{2}}
$$

so an equation of the surface (i.e., an equation that is satisfied by all points on the surface) is

$$
|y-5|=\sqrt{(y-1)^{2}+(z-2)^{2}}
$$

After squaring the equation

$$
(y-5)^{2}=(y-1)^{2}+(z-2)^{2}
$$

we can simplify it to

$$
-8 y+24=(z-2)^{2}
$$

(b) Find the equation of the trace of S in the plane $z=6$. Describe the trace (i.e. what kind of curve is it?).
If $z=6$ then the equation of the surface simplifies to

$$
-8 y+24=4^{2}=16
$$

i.e.

$$
y=1
$$

In the plane $z=6$, the set of points satisfying the equation $y=1$ is a line.

