Math 126 C - Spring 2007
 Mid-Term Exam Number One
 April 19, 2007

Name: \qquad Section: \qquad

1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

- Complete all questions.
- You may use a scientific, non-graphing calculator during this examination. Other electronic devices are not allowed, and should be turned off for the duration of the exam.
- If you use a trial-and-error or guess-and-check method, or read a numerical solution from a graph on your calculator, when an algebraic method is available, you will not receive full credit.
- You may use one hand-written 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have 50 minutes to complete the exam.

1. Let $f(x)=e^{x} \sin x$.
(a) Find the second-order Taylor polynomial $T_{2}(x)$ for $f(x)$ based at $b=0$.
(b) Give a bound on the error $\left|f(x)-T_{2}(x)\right|$ for x in the interval $-0.1 \leq x \leq 0.1$.
2. Find the first four non-zero terms of the Taylor series for

$$
f(x)=x e^{x^{2}}-\frac{1}{4+x^{2}}
$$

based at $b=0$.
3. Find the equation of the plane containing the line of intersection of the two planes

$$
x+y+z+5=0 \text { and } 3 x+2 y-z+2=0
$$

and the point $(1,2,1)$.
4. Find the point of intersection of the two lines

$$
x=4-t, y=6+2 t, z=-1+3 t \text { and } x=1+2 t, y=14-8 t, z=7-4 t .
$$

5. Let S be the surface defined as the set of points p (in three-dimensional space) such that the distance from p to the plane $y=5$ equals the distance from p to the line

$$
y=1, z=2 .
$$

(a) Find an equation for S.
(b) Find the equation of the trace of S in the plane $z=6$. Describe the trace (i.e. what kind of curve is it?).

