Math 126 C - Autumn 2010
 Mid-Term Exam Number Two
 November 23, 2010
 Answers

There were two versions of the exam.
Version A - In problem 1, $f(x, y)=\frac{9}{4} x y^{2}+y^{3}-x$.

1. There are two critical points: $(-4 / 9,2 / 3)$ and $(4 / 9,-2 / 3)$ and they are both saddle points.
2. (a) $\frac{1}{2} e^{4}-\frac{3}{2} e^{3}-\frac{1}{2} e+\ln 2-\frac{9}{8}$ (b) $\frac{1}{4} \sin 64$
3. 4π
4. $t=\frac{1}{2} \sin ^{-1} \frac{2}{3.3} \approx 0.32554929$
5. (a) $z=5 x-4 y+8$ (b) There are infinitely many such pairs. One pair is $(1,1,0)$ and $(5,0,5)$.

Version B-In problem 1, $f(x, y)=\frac{1}{4} x y^{2}+y^{3}-x$.

1. There are two critical points: $(-12,2)$ and $(12,-2)$ and they are both saddle points.
2. (a) $\frac{1}{2} e^{4}-\frac{3}{2} e^{3}-\frac{1}{2} e+\ln 2-\frac{9}{8}$ (b) $\frac{1}{6} \sin 144$
3. π
4. $t=\frac{1}{2} \sin ^{-1} \frac{2}{4.05} \approx 0.25824277$
5. (a) $z=7 x-3 y+8$ (b) There are infinitely many such pairs. One pair is $(0,0,0)$ and (1, $\frac{-10}{3}, 3$).
