Math 126 C - Autumn 2010

Mid-Term Exam Number Two
November 23, 2010

Name: \qquad Student ID no. : \qquad

Signature: \qquad Section: \qquad

1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

- Complete all questions.
- You may use a scientific, non-graphing calculator during this examination. Other electronic devices are not allowed, and should be turned off for the duration of the exam.
- If you use a trial-and-error or guess-and-check method when an algebraic method is available, you will not receive full credit.
- You may use one hand-written 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have 50 minutes to complete the exam.

1. Let $f(x, y)=\frac{9}{4} x y^{2}+y^{3}-x$. Find and classify all critical points of f.
2. Evaluate the following integrals.
(a) $\int_{1}^{2} \int_{3}^{x^{2}}\left(x e^{y}+\frac{1}{x^{3}}\right) d y d x$
(b) $\int_{0}^{4} \int_{2 y}^{8} \cos x^{2} d x d y$
3. Find the area of the region outside the cardioid

$$
r=2+2 \cos \theta
$$

and inside the circle

$$
r=6 \cos \theta
$$

4. Give the t value corresponding to a point on the hypocycloid $x=\cos ^{3} t, y=\sin ^{3} t$ at which the curvature is 1.2 .

5. Let $f(x, y)=x y+x-2 y$.
(a) Find the equation of the tangent plane to $z=f(x, y)$ at the point $(-2,4,-18)$.
(b) Find two points on the surface $z=f(x, y)$ where the tangent planes are orthogonal to each other.

