Math 126, Section E, Spring 2009, Solutions to Midterm I

1. Find the line of intersection of the two planes $x-3 y+z=9$ and $-x+4 y=4$. Give your answer
(a) As a vector function. The direction vector for the line is going to be perpendicular to the normal vectors of both planes so

$$
\mathbf{v}=\langle 1,-3,1\rangle \times\langle-1,4,0\rangle=\langle-4,-1,1\rangle
$$

To find a point common to both planes we can set $x=0$ which gives $-3 y+z=9$ and $4 y=4$ so a point will be $(0,1,12)$. The vector equation of the line is

$$
\mathbf{r}(t)=<0-4 t, 1-t, 12+t>
$$

(b) As a parametric curve.

$$
x=0-4 t, \quad y=1-t, \quad z=12+t .
$$

(c) With symmetric equations.

$$
-\frac{x}{4}=1-y=z-12
$$

2. Find the angle of intersection of the two curves $\mathbf{r}_{1}(t)=<t^{3}, 2 t^{2}+1,2 t+3>$ and $\mathbf{r}_{2}(s)=<s-4, s-3, s-1>$.
The angle of intersection of two curves is the angle between their tangent vectors at that point. So first we need to see where (if) they intersect.

$$
<t^{3}, 2 t^{2}+1,2 t+3>=<s-4, s-3, s-1>
$$

give $t=0$ and $s=4$. So they intersect at the point $\mathbf{r}_{1}(0)=\langle 0,1,3\rangle=\mathbf{r}_{2}(4)$. Their tangent vectors are given by the values of the derivatives:

$$
\mathbf{r}_{1}^{\prime}(t)=<3 t^{2}, 4 t, 2>\quad \text { and } \quad \mathbf{r}_{1}^{\prime}(0)=<0,0,2>
$$

and

$$
\mathbf{r}_{2}^{\prime}(s)=<1,1,1>\quad \text { and } \quad \mathbf{r}_{2}^{\prime}(4)=<1,1,1>
$$

so the angle between them can be calculated from

$$
\cos \theta=\frac{\langle 0,0,2\rangle \cdot<1,1,1\rangle}{\|<0,0,2\rangle|<1,1,1\rangle \mid}=\frac{1}{\sqrt{3}}
$$

3. Given the points $A(1,2,3), B(0,0,5), C(2,3,0)$ and $D(2,0,1)$:
(a) Find the equation of the plane containing the three points A, B, and C. Hint: Check you answer to see A, B and C are on your plane!
A normal of the plane can be calculated in many ways using the cross product. For example,

$$
\mathbf{n}=\overrightarrow{B A} \times \overrightarrow{B C}=<1,2,-2>\times<2,3,-5>=<-4,1,-1>
$$

Any one of the three points will then give

$$
-4 x+y-z=-5
$$

(b) What is the area of the triangle $A B C$?

It is $\left.\frac{1}{2}|<-4,1,-1\rangle \right\rvert\,=\frac{3 \sqrt{2}}{2}$
(c) Find the distance from point D to the plane in part (a)

The distance from D to the plane can be computed as

$$
\left|\operatorname{comp}_{\mathbf{n}} \overrightarrow{B D}\right|=\frac{|\mathbf{n} \cdot \overrightarrow{B D}|}{\mathbf{n} \cdot \mathbf{n}}=\frac{|<-4,1,-1>\cdot<2,0,-4>|}{<-4,1,-1>\cdot<-4,1,-1>}=\frac{2}{9}
$$

(d) If you draw a perpendicular line from point D to the plane, where does it intersect the plane? The line through D perpendicular to the plane is

$$
\mathbf{r}(t)=<2-4 t, 0+t, 1-t>
$$

which intersects the plane when

$$
-4(2-4 t)+(t)-(1-t)=-5
$$

which is when $t=2 / 9$ so the point is $\mathbf{r}(2 / 9)=<10 / 9,2 / 9,7 / 9>$
4. (a) Match the following parametric curves with their graphs.

1. $x=\sin ^{3} t, y=\cos ^{3} t \mathrm{D}$
2. $x=t^{2}-4 t-20, y=\cos t \mathrm{~B}$
3. $x=\sin (3 t), y=\cos (4 t) \mathrm{A}$
4. $x=t^{3}-4 t^{2}+50, y=t^{3}-5 t+1 \mathrm{C}$

(b) Find the equation of the tangent line to $\mathbf{r}(t)=<\sin (3 t), \cos (4 t)>$ at the point $\left(\frac{\sqrt{2}}{2},-1\right)$. The slope of the tangent is given by the value of $d y / d x$ at that point.

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{-4 \sin (4 t)}{3 \cos (3 t)} .
$$

The point corresponds to $t=\pi / 4$ so the slope is 0 . Therefore, the equation of the tangent line is $y=-1$.
(c) Determine if is concave up or concave down at the point $\left(\frac{\sqrt{2}}{2},-1\right)$. Show your work. Use the appropriate graph above to verify your answer, not to find it!
Concavity is determined by the value of

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t} \frac{d y}{d x}}{d x / d t}=\frac{\frac{d}{d t} \frac{-4 \sin (4 t)}{3 \cos (3 t)}}{3 \cos (3 t)}=\frac{-16 \cos (4 t) \cos (3 t)-12 \sin (4 t) \sin (3 t)}{9 \cos ^{3}(3 t} .
$$

When $t=\pi / 4$ the values is $8 / 9$ which is positive so the curve is concave up at $\left(\frac{\sqrt{2}}{2},-1\right)$.

