Math 126 C - Spring 2007 Mid-Term Exam Number Two Answers May 10, 2007

1. (a)

$$T(1) = \langle \frac{4}{\sqrt{257}}, \frac{15}{\sqrt{257}}, \frac{4}{\sqrt{257}} \rangle$$

(b) One solutions is

$$x = 4 + 4t, y = 5 + 15t, z = 2 + 4t$$

- 2. No. Basically you can show that if there was an intersection, it would occur when $\sin \theta = 1$. However, there is no point on the curve where $\sin \theta = 1$, so there is no intersection.
- 3. (a)

$$a_T = \frac{2}{\sqrt{6}}$$

(b)

$$t = \pm 2^{-1/6}$$

4. You can show that

$$\kappa = \frac{10}{(8t^2 - 4t + 13)^{3/2}}$$

This is maximal when $8t^2 - 4t + 13$ is minimal, i.e., at t = 1/4.

5. (a) The region above the line y = -x (the line itself is not included).

(b)
$$f_{xy}(x,y) = e^y + \frac{1}{(x+y)^2}$$
.