Math 126 C - Autumn 2010 Mid-Term Exam Number Two November 23, 2010

Name:	Student ID no. :		
Signature:	Section:		

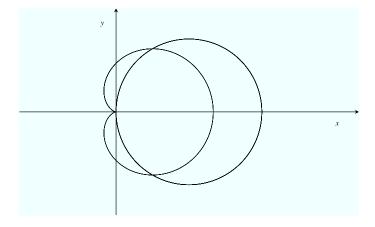
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

- Complete all questions.
- You may use a scientific, non-graphing calculator during this examination. Other electronic devices are not allowed, and should be turned off for the duration of the exam.
- If you use a trial-and-error or guess-and-check method when an algebraic method is available, you will not receive full credit.
- You may use one hand-written 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have 50 minutes to complete the exam.

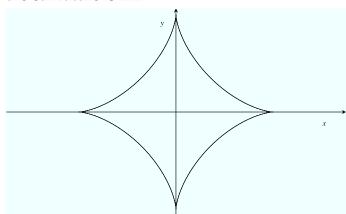
1. Let $f(x,y) = \frac{9}{4}xy^2 + y^3 - x$. Find and classify all critical points of f.

2. Evaluate the following integrals.

(a)
$$\int_{1}^{2} \int_{3}^{x^{2}} \left(xe^{y} + \frac{1}{x^{3}} \right) dy dx$$


(b)
$$\int_0^4 \int_{2y}^8 \cos x^2 \, dx \, dy$$

3. Find the area of the region outside the cardioid


$$r = 2 + 2\cos\theta$$

and inside the circle

$$r = 6\cos\theta$$
.

4. Give the t value corresponding to a point on the hypocycloid $x=\cos^3 t, y=\sin^3 t$ at which the curvature is 1.2.

- 5. Let f(x, y) = xy + x 2y.
 - (a) Find the equation of the tangent plane to z=f(x,y) at the point (-2,4,-18).

(b) Find two points on the surface z=f(x,y) where the tangent planes are orthogonal to each other.