Math 126 Homework 13.3/49 and 13.4/38 Hints

Problem 49 on 13.3 and problem 38 on 13.4 of the homework are trying to get you to practice a bit with vector and derivative operations relating to the tangent, principal unit normal, and binormal vectors. However, it is quite challenging without a few helpful hints. Here are hints to get you started:

Problem 13.3/49

1. Part (a): Start with $|\mathbf{B}| = 1$ and derive that $\frac{dB}{ds} \cdot \mathbf{B} = 0$. Use the exact same technique that we used in class to derive that $\mathbf{T}'(t) \cdot \mathbf{T}(t) = 0$. As an extra challenge, I suggest you try to give an argument for why $|\mathbf{B}| = 1$.

2. Part (b): Start with $\mathbf{B} = \mathbf{T} \times \mathbf{N}$ and show that $\frac{dB}{ds} = \frac{T \times N'}{|r'(t)|}$. (You will need to use the cross product rule). From this, explain why $\frac{dB}{ds}$ is orthogonal to \mathbf{T}.

 You will need to use the following facts: (i) $\frac{dB}{ds} = \frac{dB}{dt} \frac{ds}{dt}$, (ii) $\mathbf{T}' \times \mathbf{N} = 0$ because they are parallel, and (iii) the cross product of two vectors is orthogonal to each vector.

3. Part (c): From parts (a) and (b), you know that $\frac{dB}{ds}$ is orthogonal to both \mathbf{B} and \mathbf{T}. From this you can deduce a relationship between $\frac{dB}{ds}$ and \mathbf{N}.

4. Part (d): A plane curve is a curve that is always traveling on the same plane. Thus, \mathbf{B} is always the same vector. That is, \mathbf{B} is a constant unit vector with respect to s. Hence, $\frac{dB}{ds} = 0$. Now use part (c) to deduce the result.

Problem 13.4/38

Start with the defined relationship $\mathbf{L}(t) = m \mathbf{r}(t) \times \mathbf{v}(t)$ and compute $\mathbf{L}'(t)$ by using the cross product rule. (Note that $\mathbf{v}(t) \times \mathbf{v}(t) = 0$ because they are parallel vectors).