## Taylor Polynomials and Series Review

Taylor polynomials: I give the 1st, 2nd, 3rd and, general, nth Taylor polynomials below.

$$
\begin{aligned}
& T_{1}(x)=\sum_{k=0}^{1} \frac{f^{(k)}(b)}{k!}(x-b)^{k}=f(b)+f^{\prime}(b)(x-b) . \\
& T_{2}(x)=\sum_{k=0}^{2} \frac{f^{(k)}(b)}{k!}(x-b)^{k}=f(b)+f^{\prime}(b)(x-b)+\frac{f^{\prime \prime}(b)}{2!}(x-b)^{2} . \\
& T_{3}(x)=\sum_{k=0}^{3} \frac{f^{(k)}(b)}{k!}(x-b)^{k}=f(b)+f^{\prime}(b)(x-b)+\frac{f^{\prime \prime}(b)}{2!}(x-b)^{2}+\frac{f^{\prime \prime \prime}(b)}{3!}(x-b)^{3} . \\
& T_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(b)}{k!}(x-b)^{k}=f(b)+f^{\prime}(b)(x-b)+\frac{f^{\prime \prime}(b)}{2!}(x-b)^{2}+\cdots+\frac{f^{(n)}(b)}{n!}(x-b)^{n} .
\end{aligned}
$$

Taylor inequalities: I give the first error bound and the general error bound below.
ERROR $=\left|f(x)-T_{1}(x)\right| \leq \frac{M}{2!}|x-b|^{2} \quad$, where $\left|f^{\prime \prime}(x)\right| \leq M$ on the interval, and in general,
ERROR $=\left|f(x)-T_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-b|^{n+1} \quad$, where $\left|f^{(n+1)}(x)\right| \leq M$ on the interval.
Three types of error questions:
Given an interval $[b-a, b+a]$, find the $T_{n}(x)$ error bound:

1. Find $\left|f^{(n+1)}(x)\right|$.
2. Determine a bound (a 'tight' bound if easy to find, but any bound will do) for $\left|f^{(n+1)}(x)\right| \leq M$ on the interval.
3. In Taylor's inequality $\frac{M}{(n+1)!}|x-b|^{n+1}$ replace $M$ and replace $x$ by an endpoint.

Find an interval so that $T_{n}(x)$ has a desired error:

1. Write $[b-a, b+a]$ and you will solve for $a$.
2. Find $\left|f^{(n+1)}(x)\right|$.
3. Determine a bound (the maximum value if possible) for $\left|f^{(n+1)}(x)\right| \leq M$ on the interval, this may involve the symbol $a$.
4. In Taylor's inequality $\frac{M}{(n+1)!}|x-b|^{n+1}$ replace $M$ and replace $x$ by an endpoint (this will involve the symbol $a$ ).
5. Then solve for $a$ to get the desired error.

Given an interval $[b-a, b+a]$, find $n$ so that $T_{n}(x)$ gives a desired error:
(There is no good general way to solve for the answer in this case, you just use trial and error).

1. Find the error for $n=1$, then $n=2$, then $n=3$, etc. Once you get an error less than the desired error, you stop.
2. If you spot a pattern in the errors, then use the pattern to solve for the first time the error will be less than the desired error.

Taylor series: Know these four series very well and know their intervals of convergence.

$$
\begin{array}{lll}
e^{x}=\sum_{k=0}^{\infty} \frac{1}{k!} x^{k} & =1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots & , \text { for all } x . \\
\sin (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1} & =x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}+\cdots & , \text { for all } x . \\
\cos (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k} & =1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}+\cdots & , \text { for all } x . \\
\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k} & =1+x+x^{2}+x^{3}+\cdots & , \text { for }-1<x<1
\end{array}
$$

Substituting into series (examples): Know how to substitute into known series, including the interval of convergence.

$$
\begin{array}{lll}
e^{2 x^{3}}=\sum_{k=0}^{\infty} \frac{1}{k!} 2^{k} x^{3 k} & =1+2 x^{3}+\frac{2^{2}}{2!} x^{6}+\frac{2^{3}}{3!} x^{9}+\cdots & , \text { for all } x . \\
\sin (5 x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} 5^{2 k+1} x^{2 k+1} & =5 x-\frac{5^{3}}{3!} x^{3}+\frac{5^{5}}{5!} x^{5}+\cdots & , \text { for all } x . \\
\cos \left(x^{2}\right)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{4 k} & =1-\frac{1}{2!} x^{4}+\frac{1}{4!} x^{8}+\cdots & , \text { for all } x . \\
\frac{1}{1+3 x}=\sum_{k=0}^{\infty}(-3)^{k} x^{k} & =1-3 x+3^{2} x^{2}-3^{3} x^{3}+\cdots & , \text { for }-1<-3 x<1 .
\end{array}
$$

Multiplying out (examples): Know how to mulitply/divide a given series by $x$ or $x^{2}$ or $x^{3}$, etc.

$$
\begin{array}{ll}
x^{3} e^{x}=\sum_{k=0}^{\infty} \frac{1}{k!} x^{k+3} & =x^{3}+x^{4}+\frac{1}{2!} x^{5}+\frac{1}{3!} x^{6}+\cdots \quad, \text { for all } x . \\
\frac{x^{2}}{1+2 x}=\sum_{k=0}^{\infty}(-2)^{k} x^{k+2} & =x^{2}-2 x^{3}+2^{2} x^{4}-2^{3} x^{5}+\cdots \quad, \text { for }-1<2 x<1 .
\end{array}
$$

Integrating/Differentiating (examples): Know how to integrate and differentiate.

$$
\begin{array}{lll}
-\ln (1-x)=\int_{0}^{x} \frac{1}{1-t} d t=\sum_{k=0}^{\infty} \frac{1}{k+1} x^{k+1} & =x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\cdots & , \text { for }-1<x<1 \\
\tan ^{-1}(x)=\int_{0}^{x} \frac{1}{1+t^{2}} d t=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} x^{2 k+1} & =x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\cdots & , \text { for }-1<x<1 \\
\int e^{x^{3}} d x=C+\sum_{k=0}^{\infty} \frac{1}{k!} \frac{1}{3 k+1} x^{3 k+1} & =C+x+\frac{1}{2!(4)} x^{4}+\frac{1}{3!(7)} x^{7}+\cdots & , \text { for all } x . \\
\frac{1}{(1-x)^{2}}=\frac{d}{d x}\left(\frac{1}{1-x}\right)=\sum_{k=0}^{\infty} k x^{k-1} & =1+2 x+3 x^{2}+4 x^{3}+\cdots & , \text { for }-1<x<1
\end{array}
$$

