Exam 4 Facts

Volumes: $\iint_{D} f(x, y) d A=$ signed volume 'above' the $x y$-axis, 'below' $f(x, y)$ and inside the region D.
We also saw $\iint_{D} 1 d A=$ area of D.

To set up a double integral:

1. Integrand(s). Solve for integrand(s). $(z=f(x, y))$.
2. Draw the region.
(a) Draw the given $x y$-equations in the $x y$-plane (label intersections of curves).
(b) Draw $x y$-equations that occur from surface intersections (when the z 's are equal).
3. Bounds. Set up the double integral(s) using one of our three methods.
4. Evaluate.

Options for set-up (step 3):

$\iint_{D} f(x, y) d A=\int_{a}^{b} \int_{g(x)}^{h(x)} f(x, y) d y d x$,	$y=g(x)=$ bottom,	$y=h(x)=$ top
$\iint_{D} f(x, y) d A=\int_{c}^{d} \int_{p(y)}^{q(y)} f(x, y) d x d y$,	$x=p(y)=$ left,	$x=q(y)=$ right
$\iint_{D} f(x, y) d A=\int_{\alpha}^{\beta} \int_{w(\theta)}^{v(\theta)} f(r \cos (\theta), r \sin (\theta)) r d r d \theta$,	$r=w(\theta)=$ inner,	$r=v(\theta)=$ outer

Center of Mass Application: If $\rho(x, y)=$ formula for density at a point in the region D, then

$$
M=\text { total mass }=\iint_{D} \rho(x, y) d A \quad, \quad \bar{x}=\frac{\iint_{D} x \rho(x, y) d A}{\iint_{D} \rho(x, y) d A} \quad \text { and } \quad \bar{y}=\frac{\iint_{D} y \rho(x, y) d A}{\iint_{D} \rho(x, y) d A}
$$

