Exam 1 Basic Fact Sheet

Basic Vector Facts

$ \mathbf{v} = \sqrt{v_1^2 + v_2^2 + v_3^2}$	$c\mathbf{v} = \langle cv_1, cv_2, cv_3 \rangle$	$\frac{1}{ \mathbf{v} }\mathbf{v}$ = 'unit vector in direction of \mathbf{v}
$\mathbf{u} + \mathbf{v} = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$	$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$	$\mathbf{u} imes \mathbf{v} = \left egin{array}{cccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \end{array} ight $
$\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \mathbf{v} \cos(\theta)$	$\mathbf{u} \cdot \mathbf{v} = 0$ means orthogonal	θ is the angle if drawn tail to tail
$ \mathbf{u} \times \mathbf{v} = \mathbf{u} \mathbf{v} \sin(\theta)$	$\mathbf{u} \times \mathbf{v}$ is orthogonal to both	$ \mathbf{u} \times \mathbf{v} = \text{parallelogram area}$
$\operatorname{comp}_{\mathbf{a}}(\mathbf{b}) = \frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} }$	$\mathbf{proj_a(b)} = rac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} ^2} \mathbf{a}$	

Basic Lines, Planes and Surfaces (assume all constants a, b and c are positive)

Lines: $x = x_0 + at$, $y = y_0 + bt$, $z = z_0 + ct$	$(x_0, y_0, z_0) = a$ point on the line
	$\langle a, b, c \rangle$ = a direction vector
Planes: $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$	$(x_0, y_0, z_0) = a$ point on the plane
	$\langle a, b, c \rangle$ = a normal vector
Cylinder: One variable 'missing'	Know basics of traces
Elliptical/Circular Paraboloid: $z = ax^2 + by^2$	Hyperbolic Paraboloid: $z = ax^2 - by^2$
Ellipsoid/Sphere: $ax^2 + by^2 + cz^2 = 1$	Elliptical/Circular Cone: $z^2 = ax^2 + by^2$
Hyperboloid of One Sheet: $ax^2 + by^2 - cz^2 = 1$	Hyperboloid of Two Sheets: $ax^2 + by^2 - cz^2 = -1$

Basic Curves in \mathbb{R}^3

$\mathbf{r}'(t) = \langle \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \rangle$	$\mathbf{r}''(t) = \langle \frac{d^2x}{dt^2}, \frac{d^2y}{dt^2}, \frac{d^2z}{dt^2} \rangle$
$\int \mathbf{r}(t) dt = \left\langle \int x(t)dt, \int y(t)dt, \int z(t)dt \right\rangle$	Note: There are three constants of integration.
Arc Length = $\int_a^b \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} dt$	$s(t) = \int_0^t \sqrt{(x'(u))^2 + (y'(u))^2 + (z'(u))^2} du$
$\kappa(t) = \frac{ \mathbf{r}'(t) \times \mathbf{r}''(t) ^{3}}{ \mathbf{r}'(t) ^{3}}$	$\kappa(x) = \frac{ f''(x) }{(1+f'(x)^2)^{3/2}} = \text{'2D curvature'}$
$\mathbf{r}'(t) = \mathbf{v}(t) = \text{velocity vector}$	$ \mathbf{r}'(t) = \mathbf{v}(t) = \text{speed}$
$\mathbf{r}''(t) = \mathbf{a}(t) = \text{acceleration}$	$\mathbf{r}(t) = \int \mathbf{v}(t) dt$ and $\mathbf{v}(t) = \int \mathbf{a}(t) dt$
$\mathbf{T}(t) = \frac{1}{ \mathbf{r}'(t) }\mathbf{r}'(t) = \text{unit tangent}$	$\mathbf{N}(t) = \frac{1}{ \mathbf{T}'(t) } \mathbf{T}'(t) = \text{principal unit normal}$
$\mathbf{B}(t) = \mathbf{T} \times \mathbf{N} = \text{binormal}$	$\mathbf{r}'(t) \times \mathbf{r}''(t) = $ a vector parallel to \mathbf{B}
$a_T = \frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{ \mathbf{r}'(t) }$	$a_N = rac{ \mathbf{r}'(t) imes \mathbf{r}''(t) }{ \mathbf{r}'(t) }$