
14.4 and 14.7 Review

This review sheet discusses, in a very basic way, the key concepts from these sections. This review is
not meant to be all inclusive, but hopefully it reminds you of some of the basics. Please notify me if
you find any typos in this review.

14.4 Tangent Planes: Know how to find a tangent plane and understand it’s basic uses in linear
approximation and differentials.

1. The Tangent Plane Equation for the function z = f(x, y) where (x0, y0, z0) is given by

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

So you have to first find the partial derivatives and then plug in the values of (x0, y0).

2. Since z0 = f(x0, y0) and z = z0 + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0), we can rewrite the
tangent plane as

L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0),

which we call the tangent plane approximation or the linear approximation of f(x, y)
based at (x0, y0).

If (x, y) is “near” (x0, y0), then

f(x, y) ≈ L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

Here is a linear approximation example:

Find the linear approximation for f(x, y) = x cos(y + 2x) + y2 based at (−1, 2) and use it to
approximate the value of (−0.9, 2.05).

ANSWER:

(a) First we find the tangent plane by computing the partial derivatives and get the z value:

fx(x, y) = cos(y + 2x)− 2x sin(y + 2x) fy(x, y) = −x sin(y + 2x) + 2y
fx(−1, 2) = cos(0)− 2(−1) sin(0) = 1 fy(−1, 2) = −(−1) sin(0) + 4 = 4
z0 = f(−1, 2) = − cos(0) + 4 = 3

So the tangent line approximation is:

z = 3 + 1(x− (−1)) + 4(y − 2) = 3 + (x + 1) + 4y − 8 = x + 4y − 4.

(b) Now we can approximate the value of f(−0.9, 2.05) by using the height on the tangent plane:

z = (−0.9) + 4(2.05)− 4 = 3.3.

(Note that this is very close to the actual value f(−0.9, 2.05) = 3.33047882.
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14.7 Maximum and Minimum Value: Be able to find critical points and classify them. Also be
able to find absolute maxima and minima.

1. To find the critical points, set fx(x, y) and fy(x, y) both equal to zero and solve them simula-
neously. Any points where fx or fy is undefined is also called a critical point.

Here is a finding critical points example:

Find the critical points for f(x, y) = x2 − 8y3 + 4xy + 1.

ANSWER:

(a) Find the partial derivatives and set them equal to zero:

fx(x, y) = 2x + 4y = 0 fy(x, y) = −24y2 + 4x = 0
⇒ x = −2y ⇒ x = 6y2

Now combine to get ⇒ −2y = 6y2

0 = 6y2 + 2y
0 = 2y(3y + 1)
y = 0 or y = −1/3

go back to get corresponding x values x = 0 or x = 2/3

The critical points are (x, y) = (0, 0) and (x, y) = (2/3,−1/3).

2. Be able to use the second derivative test to classify whether the critical point gives a local
maximum, local minimum, or a saddle point.

Let (a, b) be a critical point and define

D = D(a, b) = fxx(a, b)fyy(a, b)− [fxy(a, b)]2,

(a) If D > 0 and fxx(a, b) > 0, then f(a, b) is a local minimum.

(b) If D > 0 and fxx(a, b) < 0, then f(a, b) is a local maximum.

(c) If D < 0, then (a, b) is a saddle point.

(d) If D = 0, then the test is inconclusive and you will need to use other methods to classify
the point.

Here is a second derivative test example:

Classify the critical points for f(x, y) = x2 − 8y3 + 4xy + 1.

ANSWER:

(a) In the last example we found that the critical points are (0, 0) and (2/3,−1/3).

(b) We need to compute the second partial derivatives to find D.

fxx(x, y) = 2 fyy = −48y fxy = 4

Thus, we have
D(x, y) = 2(−48y)− 42 = −96y − 16.

(c) The point (0, 0) gives D = −96(0) − 16 = −16. So D < 0, which means that (0, 0) is a
saddle point.

(d) The point (2/3,−1/3) gives D = −96(−1/3) − 16 = 16. So D > 0. So we need to check
fxx(2/3,−1/3) = 2 > 0, which means that f(2/3,−1/3) is a local minimum. (or we could
say that a local minimum occurs at (2/3,−1/3).
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3. All Absolute Maximum and Minimum Values occur either at a critical point or on the
boundary of the given region. So to find the absolute maximum and minimum values:

(a) Find the critical values in the region and plug them into f(x, y).

(b) Find formulas for each part of boundary and find values of f(x, y) at these boundary points.

(c) Absolute max = biggest output, Absolute min = smallest output

The hardest part is often checking the boundaries. These are long problems because they have
lots of steps.

Here is an absolute maximum example:

Find the absolute maximum and absolute minimum of f(x, y) = 1
3x

3+3y2−x over the rectangular
region R = {(x, y)|0 ≤ x ≤ 3,−1 ≤ y ≤ 1}.

(a) The critical values occur when x2 − 1 = 0 and 6y = 0. This only happens when (x, y) =
(−1, 0) and (x, y) = (1, 0). The point (1, 0) is the only critical point in the region. The
height of the function at this point is f(1, 0) = −2/3.

(b) Now we have to consider all four sides of the rectangle (you should draw it):

i. y = −1 and 0 ≤ x ≤ 3: With y = −1, the function becomes f(x,−1) = 1
3x

3 + 3− x

ii. x = 3 and −1 ≤ y ≤ 1: With x = 3, the function becomes f(3, y) = 6 + 3y2

iii. y = 1 and 0 ≤ x ≤ 3: With y = 1, the function becomes f(x, 1) = 1
3x

3 + 3− x

iv. x = 0 and −1 ≤ y ≤ 1: With x = 0, the function becomes f(0, y) = 3y2

Now let’s maximize over each side:

i. y = −1 and 0 ≤ x ≤ 3: With y = −1, the function becomes f(x,−1) = 1
3x

3 + 3 − x.
The absolute max/min values of this one variable function can be found with Calculus
I techniques: Namely, (i) find the critical values and plug them into the function (ii)
plug the endpoints into the function (iii) the biggest output is the abs. max, smallest
output is the abs. min.
(i) Critical Numbers

d

dx

(
1

3
x3 + 3− x

)
= x2 − 1 = 0

. Critical Numbers: x = ±1. Only x = 1 is in the domain of interest. So we have
f(1,−1) = 7/3 = 2.3̄. (ii) Endpoints

f(0,−1) = 3 f(3,−1) = 9.

(ii) Absolute Max/Min Over This Side
So the absolute max and absolute min on this side are 9 and 7/3 (respectively). And
they occur at (3,−1) and (1,−1).

ii. x = 3 and −1 ≤ y ≤ 1: With x = 3, the function becomes f(3, y) = 6 + 3y2.
(i) Critical Numbers

d

dy

(
6 + 3y2

)
= 2y = 0.

Critical Numbers: y = 0. So we have f(3, 0) = 6. (ii) Endpoints

f(3,−1) = 9 f(3, 1) = 9.

(ii) Absolute Max/Min Over This Side
So the absolute max and absolute min on this side are 9 and 6 (respectively). And they
occur at (3,±1) and (3, 0).
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iii. y = 1 and 0 ≤ x ≤ 3: With y = 1, the function becomes f(x, 1) = 1
3x

3 + 3− x.
(i) Critical Numbers

d

dx

(
1

3
x3 + 3− x

)
= x2 − 1 = 0.

Critical Numbers: x = ±1. Only x = 1 is in the domain of interest. So we have
f(1, 1) = 7/3 = 2.3̄. (ii) Endpoints

f(0, 1) = 3 f(3, 1) = 9.

(ii) Absolute Max/Min Over This Side
So the absolute max and absolute min on this side are 9 and 7/3 (respectively). And
they occur at (3, 1) and (1, 1).
NOTE: This is identical to the y = −1 case! So this was redundant and I could have
skipped doing this side (and just used the analysis from the y = −1 side).

iv. x = 0 and −1 ≤ y ≤ 1: With x = 0, the function becomes f(0, y) = 3y2.
(i) Critical Numbers

d

dy

(
3y2

)
= 6y = 0.

Critical Numbers: y = 0. So we have f(0, 0) = 0. (ii) Endpoints

f(0,−1) = 3 f(0, 1) = 3.

(ii) Absolute Max/Min Over This Side
So the absolute max and absolute min on this side are 3 and 0 (respectively). And they
occur at (0,−1) and (0, 1) (max occurs twice) and (0, 0) for min.

Thus, all together over the entire region, we found

Abs. Max = f(3, 1) = 9 Abs. Min = f(1, 0) = −2/3
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