1. (a) (7 points) HINT: \(r'(2) = \langle 4, -2, 6 \rangle \) and \(r''(2) = \langle 2, 1, 1 \rangle \).

 ANSWER: \(a_T = \frac{12}{\sqrt{56}} \) and \(a_N = \frac{8\sqrt{3}}{\sqrt{56}} \)

 (b) (3 points) ANSWER: \(4(x - 4) - 2(y + 5) + 6(z - 10) = 0 \) OR \(4x - 2y + 6z = 86 \) OR \(2x - y + 3z = 43 \)

2. (a) (4 points) HINT: \(f_y(x, y) = -e^{-xy}(\sin y + x \cos y) \)

 ANSWER: \(f_{yx}(x, y) = -e^{-xy}(\cos y - y \sin y - xy \cos y) \)

 (b) (4 points) HINT: \(f_x(x, y) = -ye^{-xy} \cos y \). So, \(f_x(\pi, 0) = 0 \) and \(f_y(\pi, 0) = -\pi \). The tangent plane is the plane with normal vector \(\langle 0, -\pi, -1 \rangle \) that contains the point \((\pi, f(\pi, 0)) = (\pi, 0, 1) \).

 ANSWER: \(-\pi(y - 0) - 1(z - 1) = 0 \) OR \(z = 1 - \pi y \)

 (c) (2 points) ANSWER: \(f(3.15, 0.001) \approx 1 - 0.001\pi \approx 0.9968584 \)

3. (a) (8 points) HINT: \(g_x(x, y) = x + y - 3 \) and \(g_y(x, y) = x + y^2 - 3 \).

 ANSWER: There is a saddle point at \((3, 0)\) and a local minimum at \((2, 1)\).

 (b) (2 points) HINT: \(g(x, 0) = \frac{1}{2}x^2 - 3x \), a quadratic whose graph is a parabola that opens up. Its vertex occurs at \(x = 3 \).

 ANSWER: \(g(3, 0) = -\frac{9}{2} \)

4. HINT: You must change the order of integration! With the current order, you have \(0 \leq x \leq \sqrt{\pi/2} \) and \(x \leq y \leq \sqrt{\pi/2} \). This means, the region over which you are integrating is the triangle bounded on the left by the \(y \)-axis \((x = 0)\), below by the line \(y = x \) and above by the line \(y = \sqrt{\pi/2} \).

 Then, we have:

 \[
 \int_0^{\sqrt{\pi/2}} \int_x^{\sqrt{\pi/2}} \cos(y^2) \, dy \, dx = \int_0^{\sqrt{\pi/2}} \int_0^y \cos(y^2) \, dx \, dy.
 \]

 ANSWER: \(\frac{1}{2} \)

5. HINT: Convert to polar:

 \[
 \iint_D \frac{xye^x}{(x^2 + y^2)^{3/2}} \, dA = \int_0^{\pi/2} \int_0^3 \cos \theta \sin \theta e^{r \cos \theta} \, dr \, d\theta.
 \]

 ANSWER: \(\frac{1}{3}e^3 - \frac{4}{3} \)