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1. (M pts) The parallelogram below has corners at the points A, B, C' and D. The point E is
discussed in the last question on this page. You are given the following information

B
o The location of the points A(1,2,3) and B(2,3,5)

o The vector AD = (3,-1,0)

D
) (a) Give the (z,y, z) coordinates of the point C.
7) MANY WAYS To GET THIS,
THE EASIEST |S PRORARLY To REALIZE THAT
—C
i R g0 To GET Frem B To ¢
= AD =<3,-), 0

weg
Do ax= 3/ oy “_:‘J_e_?:‘__g__,.._. e S———
(’2+'}3-\S+0) L(:z:y,z) {5 2 ?)_ \
(b) Find the area of the parallelogram and give the equation of the plane contmnmg this pa.ra]-
L’*’ lelogram. ¢ ¢ %
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Plane Equation = 2()( l\ + G(q ?—\ "}( ‘3) =0
3 (¢) Find the angle ZBAD, which is the angle at the vertex A.

(Give your final answer & in degrees, rounded to the nearest degree)
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(d) The point E is on the line segment from A to B and the line from E to D is perpendicular

} to the line segment from A to B (as shown). Find the vectm D
)
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2. (12 pts)
(a) Determine whether each statement is true or false in R3.
(Put " x” in the circle next to your choice) CAN BE SKEW
i. O TRUE B(FALSE : Two different lines parallel to a given plane must be parallel.
TRUE (O FALSE : Two different planes perpendicular to a given line must be

parallel. TRvE
(b) Consider the line L; given by x = 9+¢, y = 4+ 2t, 2 = 1 — 5t. A second line, Lo, is
5 perpendicular to the plane 3z — y + 5z = 30 and intersects this plane at its z-intercept. Give
parametric equations for the line L, and find the intersection of the two lines L; and Ly (if
they do not intersect, then write DNE). L T £3,-1,5)
Z - INTERCEPT 1 (0,0, 0)
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Line Equations for Ly: __ X =3u , 4 =-u" 5 22645
Intersection of L, and Ly: (z,y,2) = (b, -2,16)

(c) Find the equation of the plane that passes through the point (3,2,1) and contains the line

[
_) of intersection of the two planes 2z +y+52=9and 2 —y + 2 = 3. \
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3. (12 pts) Consider curve given by r;(t) = (Vat + 1,e9, 3).
pa f‘an\(" “ec
(a) Find equations for the tangent line to the curve at the point (3,1,8). And give the point of
é intersection of this tangent lix}f‘w‘i_‘th the plane 3z — 2y + z = 33.
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Intersection point (z,y, 2) = (5 i l 3}. L/ Lf')

(b) Find the arc length of the curve of intersection of the elliptical cylinder 42? +y* = 4 and the

Q plane z = v/3z. (Parameterize AND compute the arc length integral)
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4. ()2 pts)

(a) Find and simplify an equation for the surface consisting of all points P whose distance to the
y-axis is 5 times the distance to the plane y = 1. Then give the precise name of this surface

M DIST From ()(lj/}\ To (0/3/03’/: 85 :YBisT Fram (X;:,,Z> To ()(”,3)'/
+ A
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Name: CONE

(b) Find all constants, a, so that the curve r(t)

(o Clrculan CopE)
= (2cos(t),2sin(t),at?) has a curvature of
5 k(0)=1att=0.
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(c) Dr. Loveless throws an object into the air. Gravity and wind act on the object as it moves.

The acceleration of the object is given by a(t) = (e™*,0, —10). The initial velocity is v(0) =
(O 4,10) and the initial position 1s r(0)

wo 1gzsa erte ecimal.
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