z = f(a, b) = height above xy-plane at (a, b)	Be able to find and graph the domain.
	Know the basics on level curves/contour maps
$ \begin{aligned} f_x(a,b) &= \frac{\partial z}{\partial x} = \text{slope in } x \text{-direction at } (a,b) \\ f_y(x,y) &= \frac{\partial z}{\partial y} = \text{slope in } y \text{-direction at } (a,b) \end{aligned} $	$\langle 1, 0, f_x(a, b) \rangle$ is a tangent vector in x-direction
$f_y(x,y) = \frac{\partial z}{\partial y}$ = slope in y-direction at (a,b)	$\langle 0, 1, f_y(a, b) \rangle$ is a tangent vector in y-direction
$z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$	Tangent plane or Linear Approximation at (a, b)
$f_{xx}(a,b) = \frac{\partial^2 z}{\partial x^2} = $ concavity in x-direction at (a,b)	$f_{xy}(a,b) = \frac{\partial^2 z}{\partial y \partial x}$ = mixed second partial at (a,b)
$f_{yy}(a,b) = \frac{\partial^2 z}{\partial u^2} = $ concavity in y-direction at (a,b)	$f_{xy} = f_{yx}$ (Clairaut's Theorem)
$D = f_{xx} \cdot f_{yy} - (f_{xy})^2$ = measure of concavity	at a critical point (a, b)
	D < 0 means concavity changes (saddle point)
	$D > 0, f_{xx} < 0$ means concave down all dir. (local max)
	$D > 0, f_{xx} > 0$ means concave up all dir. (local min)

Ch. 14 - Slopes on Surfaces - Quick Summary

- To find critical points: Find $f_x(x, y)$ and $f_y(x, y)$. Set them BOTH equal to zero, then COMBINE the equations and solve for x and y. Check that your points do in fact make both partials equal to zero!
- To classify critical points: First find the critical points, then find f_{xx} , f_{yy} , and f_{xy} . At each critical point compute f_{xx} , f_{yy} , f_{xy} and D. Make appropriate conclusions from the second derivative test.

• To find absolute max/min over a region: Draw the region.

- 1. Find the critical pts inside the region, label in region.
- 2. Over each boundary:
 - (a) Substitute the xy-equation for that boundary into the surface to get a one variable function.
 - (b) Find the critical numbers and endpoints for this one variable problem (Calculus 1). The picture of the region will tell you the endpoints.
 - (c) Label all these critical numbers and endpoints on this boundary. Repeat for other boundary curves.
- 3. Plug each point you found into the original function z = f(x, y). Biggest output is the max, smallest output is the min.

• To find a max/min in an applied problem (optimization)

- 1. Draw and label a picture.
- 2. Objective: What are you optimizing?!? (This is the function you need to find and differentiate!)
- 3. Constraint: Write down the constraints and use them to make the objective a two-variable function.
- 4. Find the critical points of your objective function. (If you differentiate anything other than your objective, you made a mistake).
- 5. If asked, use the second derivative test to verify that your critical point does indeed give a max or min as desired.

BIG SKILLS TO PRACTICE:

- Computing partial derivatives. Be able to handle all the situations you saw in homework. It is vital on this exam that you can do derivatives, even if they are 'messy'.
- Solving systems of equations to find critical points. Be organized in your work. Be logical in how you combine equations (like I showed in lecture and in the live-stream). And always, always, always check that your final points do indeed make BOTH your 1st partials zero.