
12.4 Review
In 12.4, we learn about cross products.

1. For two vectors a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉, we define
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which is equal to

a× b = (a2b3 − a3b2)i− (a1b3 − a3b1)j + (a1b2 − a2b1)k.

2. The cross product is defined in this unusual way in order to accomplish one main goal (you can
sort of see why it is defined this way or how you could reverse engineer where this came from when
you see the goal). The main fact about cross products for this class is:

a× b is orthogonal to both a and b.

You can see this is true simply by using what we learned about dot product from last section.
Meaning the proof is just checking the two dot products below (this is how someone came up with
the cross product, they successfully found a pattern that would always make this happen):

a · (a× b) = a1(a2b3 − a3b2)− a2(a1b3 − a3b1) + a3(a1b2 − a2b1) = 0

b · (a× b) = b1(a2b3 − a3b2)− b2(a1b3 − a3b1) + b3(a1b2 − a2b1) = 0.

Using the main fact, we can always check that we did the cross product correctly. After computing
a cross product, ALWAYS go back and check that the two dot products above come out to be
zero. If they don’t both come out to be zero, then you made a mistake in your cross product.
Don’t ever skip this step, always check your work!

3. Essential Properties. You should recognize that these properties essentially tell us that the cross
product satisfies most of the standard rules that we are used to using for regular products (EX-
CEPT it is not commutative):

(a) a× b = −b× a (so if you switch the order you flip all the signs).

(b) a× (b + c) = a× b + a× c

(c) c(a× b) = (ca)× b = a× (cb)

4. Interpreting the length of a× b: Just like we did when interpreting the dot product, draw a and
b tail to tail and label the angle between them θ (0 ≤ θ ≤ π). But now draw the parallelogram
that is formed by taking a and b as the sides. Also label the height of the parallelogram as h.
(see below)

Using basic trigonometry, we see that h = |b| sin(θ). So the area of this parallelogram is given by
|a|h = |a||b| sin(θ).



A fact that is not obvious, but can we seen by expanding out from the definition of cross product
(see the textbook for this), is that (a×b)·(a×b) = (a21+a22+a23)(b

2
1+b22+b23)−(a1b1+a2b2+a3b3)

2,
which can be written as |a×b|2 = |a|2|b|2−(a·b)2. We then use our main fact about dot products
to get |a× b|2 = |a|2|b|2 − |a|2|b|2 cos2(θ). Factoring and using the identity 1− cos2(θ) = sin2(θ)
gives |a× b|2 = |a|2|b|2 sin2(θ). Thus (since sin(θ) is positive for this range of θ values), we have

|a× b| = |a||b| sin(θ) = ‘area of parallelogram’

(Note that if the angle between the vectors is 90 degrees, then the parallelogram is just a rectangle
and since sin(π/2) = 1 we get the correct ‘length times width’ formula for the area, namely
|a× b| = |a||b|)

5. Remember if a and b are parallel, then the angle between them is θ = 0 or θ = π. Thus, an
immediate consequence of the formula above is that:

if a and b are parallel, then |a× b| = 0 which means a× b = 〈0, 0, 0〉.

But remember the best way to test if two vectors are parallel is to see if they are scalar multiples
of each other.

6. Note that the area of the triangle formed by the two vectors a and b would be exactly half of the
area of the parallelogram. Thus,

‘Area of the triangle formed by a and b’ =
1

2
|a× b|.

This is a nice, general, and efficient formula for finding the area of any triangle in R2 or R3 (for
R2 just make the third component zero).

7. Note there are infinitely many vectors which are orthogonal to two given nonzero vectors a and
b. So the vector v = a × b is not the only vector orthogonal to both a and b. But we can say
that all vectors that are orthogonal to both a and b are scale multiples of v. Meaning any vector
that is orthogonal to both a and b will be either in the same direction as a×b or in the opposite
direction.

For the applications in this particular class (mostly finding planes), we will encounter situations
where we just need any vector that is orthogonal to both a and b, so we won’t often care about the
vectors length or direction. But in other classes where you encounter vectors, it may be important
to know which direction a× b points.

This direction is given to us by the so called ‘right-hand rule’ which says that if you curl the
fingers of your right hand from a to b, then your thumb will point in the direction of a×b. Here
are a couple examples

• If a = 〈1, 0, 0〉 (a vector that points parallel to the x-axis) and b = 〈0, 1, 0〉 (a vector that
points parallel to the y-axis), then you can verify through computation that a×b = 〈0, 0, 1〉
which points upward. The right-hand rule would have expected this upward direction be-
causes if you curl the fingers of your right hand from (1, 0, 0) on the x-axis toward (0, 1, 0)
on the y-axis, then your thumb is pointing upward. (and if you did b× a then your thumb
would point downward and you get the vector 〈0, 0,−1〉)
• If a = 〈1, 1, 1〉 (a vector that points straight out in the first octant) and b = 〈0, 0, 3〉 (a

vector that points upward parallel to the z-axis), then you can verify through computation



that a × b = 〈3,−3, 0〉. This vector points in the positive x-direction, negative y-direction
and parallel to the xy-plane.

The right-hand rule would have expect these directions since if you curl the fingers of your
right hand from (1, 1, 1) toward (0, 0, 3), then in the postive x-direction, negative y-direction,
and is parallel to the xy-plane. (again, if you did b× a then your thumb would point in the
opposite direction).

Again, I wouldn’t lose any sleep over the right-hand rule in this class, it’s just a nice way to
visually predict the direction of a× b and you’ll see it in future classes (mostly in physics).

8. ASIDE (for your own interest): The textbook mentions the so called scalar triple product (we skip
this concept in this course, but you will see it if you take more vector calculus courses). If you take
three vectors a, b and c in R3 that aren’t zero and with none of them parallel, then when they are
all drawn tail to tail they form what is called a parallelopiped (a three dimensional parallelogram).
We can find the volume of this three dimensional parallelopiped by using ‘(height) times (area of
base)’. The base is a parallelogram with area |b× c|. And since b× c points perpendicular to the
base, the height will be given by |a| cos(θ) where θ is the angle between a and b× c (we have to
be a little careful here since this vector could point upward or downward which will make cosine
of the angle positive or negative, but we will just take the absolute value in the next step to deal
with this issue). Using the main fact about dot products, we get what is called the scalar triple
product |a||b×c| cos(θ) = a · (b×c) and the volume is the absolute value of this number, namely,
‘volume of the parallelopiped’ = |a · (b× c)|.

9. ASIDE (for your own interest): In physics, the concept of torque concerns the tendency of an
object to rotate typically from a force being applied by a wrench at some distance away. Assume
a wrench is tightening a bolt. Find the vector r that has its tail at the bolt and its head at the
end of the wrench (this is the vector that represents how far away from the bolt the force is going
to be applied). Then let F be the force vector that represents the magnitude and direction of the
force being applied at the end of the wrench. In physics, we define τ = |r×F| to be the magnitude
of the torque and we say τ = r×F is the torque vector. Note that if you draw r and F tail to tail
and use the right hand rule, then you get the typical ‘righty-tighty, lefty-loosy’ rule (meaning if
you are turning the bolt clockwise, then τ points down in the direction of the bolt being tightened
and if you are turning the bolt counterclockwise, then τ points up in the direction of the bolt
being loosened). This might help you better visualize the right-hand rule as the standard rule
from tightening screws.


