Math 126C	Second Midterm	Winter 2009
Your Name	Your Signature	
Student ID #		
	Lul	ke Chris
	Section 11:30	12:30 11:30 12:30

(circle one)

CA

СВ

CC

CD

Problem	Total Points	Score
1	8	
2	6	
3	14	
4	12	
5	10	
Total	50	

- \bullet This exam is closed book. You may use one $8\frac{1}{2}\times11$ sheet of notes.
- Graphing calculators are not allowed.
- In order to receive credit, you must show your work. Explain why your answers are correct.
- If you use a trial and error (or guess and check) method when a calculus method is available, you will not receive full credit.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

1 (8 points) Let $\mathbf{r}(t) = (2t-1)\mathbf{i} + t^2\mathbf{j} + 2\sqrt{t}\mathbf{k}$. Find all times t when the tangential component of acceleration is zero.

2 (6 points) Find the equation of the tangent plane of the function $F(x,y) = \frac{3y-2}{5x+7}$ at the point (-1,1).

(14 points) Evaluate the following double integrals.

(a) (7 points)
$$\iint_R xy \sin(x^2y) \, dA, \quad R = [0, 1] \times [0, \pi/2]$$

(b) (7 points) $\iint_D y^2 e^{xy} dA$, $D = \{ (x, y) \mid 0 \le y \le 3, \ 0 \le x \le y \}$

Math 126C Second Midterm Winter 2009

4 (12 points) You wish to build a rectangular box with no top with volume 6 ft³. The material for the bottom is metal and costs \$3.00 a square foot. The sides are wooden and cost \$2.00 a square foot. Calculate the dimensions of the box with minimum cost. Use the Second Derivative test to verify that your answer is indeed a minimum.

5 (10 points) A table of values is given for a function g(x,y) defined on $R = [0,1] \times [1,4]$. (For example, g(1,4) = 9.4.) Use the table to find a linear approximation to g(x,y) near (0.5,3). Use it to approximate g(0.6,2.8). Carefully explain all your reasoning.

							4
0	1	1.8	2.8	3.9	5.2	6.5	8.0
$0 \\ 0.25$	1.2	1.9	2.9	4.0	5.3	6.6	8.2
0.5	1.4	2.1	3.1	4.2	5.5	6.8	8.5
0.75	1.6	2.2	3.3	4.5	5.8	7.0	8.9
0.5 0.75 1	1.7	2.3	3.6	4.8	6.1	7.3	9.4