MATH 126 – EXAM II Hints and Answers Version Alpha Autumn 2009

1. (a) (7 points) HINT: $r'(2) = \langle 4, -2, 6 \rangle$ and $r''(2) = \langle 2, 1, 1 \rangle$.

ANSWER: $a_T = \frac{12}{\sqrt{56}}$ and $a_N = \frac{8\sqrt{3}}{\sqrt{56}}$

- (b) (3 points) ANSWER: 4(x-4) 2(y+5) + 6(z-10) = 0 OR 4x 2y + 6z = 86 OR 2x y + 3z = 43
- 2. (a) (4 points) HINT: $f_y(x, y) = -e^{-xy}(\sin y + x \cos y)$ ANSWER: $f_{yx}(x, y) = -e^{-xy}(\cos y - y \sin y - xy \cos y)$
 - (b) (4 points) HINT: $f_x(x,y) = -ye^{-xy}\cos y$. So, $f_x(\pi,0) = 0$ and $f_y(\pi,0) = -\pi$. The tangent plane is the plane with normal vector $\langle 0, -\pi, -1 \rangle$ that contains the point $(\pi, 0, f(\pi, 0)) = (\pi, 0, 1)$.

ANSWER: $-\pi(y-0) - 1(z-1) = 0$ OR $z = 1 - \pi y$

- (c) (2 points) ANSWER: $f(3.15, 0.001) \approx 1 0.001\pi \approx 0.9968584$
- 3. (a) (8 points) HINT: $g_x(x,y) = x + y 3$ and $g_y(x,y) = x + y^2 3$. ANSWER: There is a saddle point at (3,0) and a local minimum at (2,1).
 - (b) (2 points) HINT: $g(x,0) = \frac{1}{2}x^2 3x$, a quadratic whose graph is a parabola that opens up. Its vertex occurs at x = 3.

ANSWER: $g(3,0) = -\frac{9}{2}$

4. HINT: You must change the order of integration! With the current order, you have $0 \le x \le \sqrt{\pi/2}$ and $x \le y \le \sqrt{\pi/2}$. This means, the region over which you are integrating is the triangle bounded on the left by the y-axis (x=0), below by the line y=x and above by the line $y=\sqrt{\pi/2}$.

Then, we have:

$$\int_0^{\sqrt{\pi/2}} \int_x^{\sqrt{\pi/2}} \cos(y^2) \, dy \, dx = \int_0^{\sqrt{\pi/2}} \int_0^y \cos(y^2) \, dx \, dy.$$

ANSWER: $\frac{1}{2}$

5. HINT: Convert to polar:

$$\iint\limits_{D} \frac{xye^x}{(x^2+y^2)^{3/2}} dA = \int_0^{\pi/2} \int_0^3 \cos\theta \sin\theta e^{r\cos\theta} dr d\theta.$$

ANSWER: $\frac{1}{3}e^3 - \frac{4}{3}$