Math 126C First Midterm Solutions Winter 2009

(5 points)  Calculate the equation of the tangent line to the curve r = 1 4 2cos(#) at the
point where § = w/2. Give your equation in terms of z and y.

Point: r=1+4xcosm/2=1, x=rcosf=1-cosn/2=0, y=rsinf=1-sin7/2=1
Slope: x =rcosf = (14 2cosf)cosl, dr/d) = —2sinfcosf — (1 + 2cosf)sind.

At 0 = 7/2 we have dx/df = —1.

y=rsinf = (1+2cosf)sinf, dz/d) = —2sin*6+ (14 2cosh)cosd.

At 0 = w/2 we have dy/df = —2.

dy dy/dd 5

dr  dr/d§

Line: y—1=2x

(5 points)  Compute the distance from the point (3,2, 1) to the plane = + 2y + 3z = 1.

Plug in y =0 and z = 0 to get the point (1,0,0) on the plane.
(Any point on the plane will do.)
Let v be the vector from (1,0,0) to (3,2,1). Then v = (2,2, 1).
The distance from (3,2,1) to the plane is the magnitude of the projection of v onto
N = (1,2,3), the normal vector of the plane.
v-N 2-1+2-2+1-3 9
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(8 points) Compute parametric equations for the line that contains the point (—1,2, —3)
and is parallel to both of the planes 2x —y =3 and © — 2y + 3z = 2.

The direction vector is (2, —1,0) x (1,—-2,3) = (-3, —6, —3).
Any nonzero scalar multiple will work so I'll use (1,2,1).

The parametric equations are

r = t—1
y = 2t+2
z = t—3

(6 points)  Find a vector function r(t) that represents the curve of intersection of the surfaces
422 + (2 —1)* =9 and y = 32°.

22\ 2 —1\?
Rewrite the first equation as (Ex) + (Z 3 ) =1.

z—1

2
So set gx = cos(t) and = sin(?).

We have y =3 - [% cos(t)}2

3 2
The vector function is r(t) = <§ cos(t), Z7 cos?(t), 3sin(t) + 1>.
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(12 points)  Let r(t) = (#3,2,¢3 — 2t).

(a) (6 points)  Compute the curvature x at the point (—1,1,1).

The point (—1,1,1) is at t = —1.

r'(t) = (3t%,2t, 3t — 2) sor'(—1) = (3,-2,1).
v’ (t) = (6t,2,6t) and r"(—1) = (6,2, —6).
Then r'(—1) x r"(—1) = (10, 12, —6) and

w(-1) = FED XD VI V5 o3,

(=1 (\/ﬂf’ 7

(b) (6 points)  Find the arclength of this curve between the points (—1,1,1) and (1,1, —1).
Set up the integral, but do not evaluate.

The point (1,1,—1) is at t = 1.
1

We use the arc length formula s = / [v'(t)| dt.
-1

1
The integral is / \/(3t2)2 +(2t)% + (3t2 — 2)° dt.
-1

1
This can be simplified to / VISIT — 82 1 4 dt.
-1
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[ 6] (8 points)  Find the exact coordinates of the lowest K_\l
point on the curve in R? given by the parametric ‘ ‘ ‘ ‘
equations x = 2 cos(t) + sin(t), y = sin(t) — cos(t). \J

Solve % = cos(t) +sin(t) =0 sin(t) = —cos(t) tan(t) = —1.

T  3m
Thi t=—— or —.
18 means 1 or 4

d
Note that d—f = —2sin(t) + cos(t) is non-zero at these values.

You can tell from the picture that the minimum is at t = —7.

Here x = 2 cos(—n/4) + sin(—7/4) = g and y = sin(—7/4) — cos(—7/4) = —/2.

(6 points) A particle in R3 has position function r(t) = (2t3+ 1,2 3t —t?). Find the speed
of the particle when t = 2.

) = (6t*,2t,3 —2t)
r'(2) = (24,4,—1)

| = 242442 4 (—1)2
= 593




