January 25, 2018

Name: \qquad

Section: \qquad
Student ID Number: \qquad

PAGE 1	13	
PAGE 2	12	
PAGE 3	11	
PAGE 4	12	
PAGE 5	12	
Total	60	

- There are 5 pages of questions. Make sure your exam contains all these questions.
- You are allowed to use a Ti-30x IIS Calculator model ONLY (no other calculators allowed). And you are allowed one hand-written 8.5 by 11 inch page of notes (front and back).
- Leave your answer in exact form. Simplify standard trig, inverse trig, natural logarithm, and root values. Here are several examples: you should write $\sqrt{4}=2$ and $\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$ and $\frac{7}{2}-\frac{3}{5}=\frac{29}{10}$ and $\ln (1)=0$ and $\tan ^{-1}(1)=\frac{\pi}{4}$.
- Show your work on all problems. The correct answer with no supporting work may result in no credit. Put a box around your FINAL ANSWER for each problem and cross out any work that you don't want to be graded.
- If you need more room, use backs of the pages and indicate to the grader that you have done so.
- Raise your hand if you have a question.
- There may be multiple versions of the exam so if you copy off a neighbor and put down the answers from another version we will know you cheated. Any student found engaging in academic misconduct will receive a score of 0 on this exam. All suspicious behavior will be reported to the student misconduct board.
- You have 80 minutes to complete the exam. Budget your time wisely.

SPEND NO MORE THAN 10 MINUTES PER PAGE!

1. (13 pts) Evaluate the integrals. If you do a substitution in a definite integral problem, you must show me that you can appropriately change the bounds to get full credit. Simplify your final answers.
(a) $\int_{0}^{\pi / 6} \frac{\sin (2 x)}{(\cos (2 x))^{4}} d x$
(b) $\int x^{3} \sqrt{x^{2}+5} d x$
2. (12 pts) (The two problems below are NOT related)
(a) Evaluate $\int_{0}^{3}\left|6 x^{2}+6 x-12\right| d x$
(b) Let $g(x)=\int_{2 x^{2}}^{10} \sin \left(\pi t^{2}\right) d t$. Compute $g^{\prime}(1 / 2)$.
3. (11 pts) (The two problems below are NOT related)
(a) If $\int_{0}^{4} f^{\prime}(x) d x=10, \int_{3}^{4} f^{\prime}(x) d x=2$, and $f(3)=13$, then what is the value of $f(0)$?
(b) A tomato is thrown downward from the top of a tall building. At $t=3$ seconds after being thrown, the tomato is at a height of 240 feet and is traveling at a downward velocity of 110 feet $/ \mathrm{sec}$. Assume the acceleration of the tomato due to gravity is $a(t)=-32 \mathrm{ft} / \mathrm{sec}^{2}$. Find the height of the building.
4. (12 pts) (The two problems below are NOT related)
(a) Consider the region bounded by $y=e^{x}, y=0, x=0$ and $x=2$. Find the value of a such that the vertical line $x=a$ divides this region into two sub-regions of equal area.

(b) Suppose r is a number bigger than 1 . Let A be the region in the first quadrant that is below $y=1$ and inside the circle $x^{2}+y^{2}=r^{2}$. Find the volume of the solid obtained by rotating A about the y-axis. (Answer will involve r).

5. (12 pts) Let R be the region bounded by $y=3, x=0$ and $y=3 \sqrt[4]{x}$ (shown below).
(a) Find the area of this region.

(b) A solid is obtained by rotating the region R around the vertical line $x=1$. Set up the integrals for the volume of this solid using BOTH the method of cylindrical shells and the method of washers (DO NOT EVALUATE).

Shells:

Washers:

