Math 125 - Winter 2018 Exam 1 January 25, 2018

Name: ____

Section:

Student ID Number:

PAGE 1	13	
PAGE 2	12	
PAGE 3	11	
PAGE 4	12	
PAGE 5	12	
Total	60	

- There are 5 pages of questions. Make sure your exam contains all these questions.
- You are allowed to use a Ti-30x IIS Calculator model ONLY (**no other calculators allowed**). And you are allowed one **hand-written** 8.5 by 11 inch page of notes (front and back).
- Leave your answer in exact form. Simplify standard trig, inverse trig, natural logarithm, and root values. Here are several examples: you should write $\sqrt{4} = 2$ and $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$ and $\frac{7}{2} \frac{3}{5} = \frac{29}{10}$ and $\ln(1) = 0$ and $\tan^{-1}(1) = \frac{\pi}{4}$.
- Show your work on all problems. The correct answer with no supporting work may result in no credit. Put a box around your FINAL ANSWER for each problem and cross out any work that you don't want to be graded.
- If you need more room, use backs of the pages and indicate to the grader that you have done so.
- Raise your hand if you have a question.
- There may be multiple versions of the exam so if you copy off a neighbor and put down the answers from another version we will know you cheated. Any student found engaging in academic misconduct will receive a score of 0 on this exam. All suspicious behavior will be reported to the student misconduct board.
- You have 80 minutes to complete the exam. Budget your time wisely. **SPEND NO MORE THAN 10 MINUTES PER PAGE!**

GOOD LUCK!

1. (13 pts) Evaluate the integrals. If you do a substitution in a definite integral problem, you must show me that you can appropriately change the bounds to get full credit. Simplify your final answers.

(a)
$$\int_0^{\pi/6} \frac{\sin(2x)}{(\cos(2x))^4} dx$$

(b)
$$\int x^3 \sqrt{x^2 + 5} \, dx$$

2. (12 pts) (The two problems below are NOT related)

(a) Evaluate
$$\int_0^3 |6x^2 + 6x - 12| dx$$

(b) Let
$$g(x) = \int_{2x^2}^{10} \sin(\pi t^2) dt$$
. Compute $g'(1/2)$.

3. (11 pts) (The two problems below are NOT related)

(a) If
$$\int_0^4 f'(x) dx = 10$$
, $\int_3^4 f'(x) dx = 2$, and $f(3) = 13$, then what is the value of $f(0)$?

(b) A tomato is thrown downward from the top of a tall building. At t = 3 seconds after being thrown, the tomato is at a height of 240 feet and is traveling at a *downward* velocity of 110 feet/sec. Assume the acceleration of the tomato due to gravity is a(t) = -32 ft/sec². Find the height of the building.

- 4. (12 pts) (The two problems below are NOT related)
 - (a) Consider the region bounded by $y = e^x$, y = 0, x = 0 and x = 2. Find the value of a such that the vertical line x = a divides this region into two sub-regions of equal area.

(b) Suppose r is a number bigger than 1. Let A be the region in the first quadrant that is below y = 1 and inside the circle $x^2 + y^2 = r^2$. Find the volume of the solid obtained by rotating A about the y-axis. (Answer will involve r).

- 5. (12 pts) Let R be the region bounded by y = 3, x = 0 and $y = 3\sqrt[4]{x}$ (shown below).
 - (a) Find the area of this region.

(b) A solid is obtained by rotating the region R around the **vertical** line x = 1. Set up the integrals for the volume of this solid using BOTH the method of cylindrical shells and the method of washers (DO NOT EVALUATE).

Shells:

Washers: