1. (10 pts) Evaluate the integrals.

(a)
$$\int \frac{x^3(1-x^{5/2})}{\sqrt{x}} + e^{5x-2} dx$$
 SIMPLIFY

$$\int \frac{x^3}{x''^2} - \frac{x^{1/2}}{x^{1/2}} + e^{3x-2} dx$$
EITHER BY GUESS/CHECK
$$\int x^{4/2} - x^{5/2} + e^{3x-2} dx$$
OR BY SUBSTITUTION WITH $u=3x-2$

$$\frac{2}{7}x^{7/2} - \frac{1}{6}x^{6/2} + \frac{1}{3}e^{3x-2} + C$$

(b)
$$\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\operatorname{sec}(\ln(2x)) \tan(\ln(2x))}{x} dx$$

$$\int_{0}^{1} \operatorname{sec}(\ln) \tan(\ln(2x)) dx$$

$$= \operatorname{sec}(\ln) - \operatorname{sec}(0)$$

$$= \operatorname{sec}(1) - \operatorname{sec}(0)$$

$$du = \frac{2}{2x} dx$$

$$dx = x du$$

$$x = \frac{4}{2} \rightarrow u = \ln(1) = 0$$

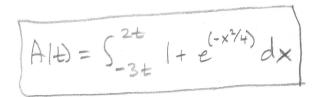
$$x = e/2 \rightarrow u = \ln(e) = 1$$

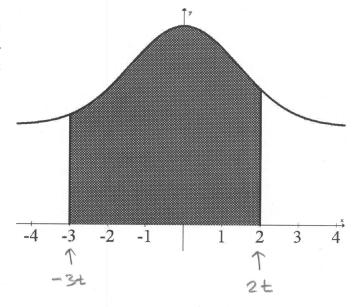
$$sec(0) = \frac{1}{cul0} = \frac{1}{1} = 1$$

$$\approx 0.850816$$

- **2** (9 pts) A long wall is in the shape of region between $f(x) = 1 + e^{(-x^2/4)}$ and the y-axis. Two painters start at the origin. One moves in the positive x-direction at a constant rate of 2 feet/minute. The other moves in the negative x-direction at a constant rate of 3 feet/minute. They paint the region of the fall in front of them as they go. (The picture below depicts the painted region after t = 1 minute).
 - (a) (3 pts)

Set up an integral (DO NOT EVALUATE) that gives the area of the wall painted region of the wall after t minutes. (Hint: Your answer will contain the variable t).





(b) (5 pts) At what rate is the area of the painted region changing at t=2 minutes?

$$A(t) = \int_{-3t}^{0} 1 + e^{-x^{2}/4} dx + \int_{0}^{2t} 1 + e^{-x^{2}/4} dx$$

$$A(t) = -\int_{0}^{3t} 1 + e^{-x^{2}/4} dx + \int_{0}^{2t} 1 + e^{-x^{2}/4} dx$$

$$A'(t) = -(-3)(1 + e^{-\frac{qt^{2}}{4}}) + (2)(1 + e^{-\frac{qt^{2}}{4}})$$

$$A'(2) = 3(1 + e^{-q}) + 2(1 + e^{-q})$$

$$= 5 + 3e^{-q} + 2e^{-q} + \frac{f^{2}}{min}$$

$$= 5 + \frac{3}{e^{q}} + \frac{2}{e^{q}} \approx 5.0370015$$

3. (Text) Evaluate
$$\int_{\pi/4}^{3\pi/4} \left| \cos(x) \sin^2(x) \right| dx$$

when
$$X = \frac{-\pi}{-\pi} = 0$$

when $X = \frac{-\pi}{-\pi} = \frac{\pi}{2} = 0$

only one in region

$$\int \cos(x) \sin^{2}(x) dx \qquad u = \sin(x)$$

$$= \int u^{2} du = \frac{1}{3}u^{3} + c = \frac{1}{3}\sin^{3}(x) + c$$

$$S_{7/4}^{37/4} \cos(x) \sin^{2}(x) dx = \frac{1}{3} \sin^{2}(x) \frac{\pi}{11/4} = \frac{1}{3} \left(1 - \left(\frac{\pi}{2} \right)^{3} \right) > 0$$

$$S_{7/4}^{37/4} \cos(x) \sin^{2}(x) dx = \frac{1}{3} \sin^{2}(x) \frac{1}{11/2} = \frac{1}{3} \left(\left(\frac{\pi}{2} \right)^{3} - 1 \right) = \frac{2}{3} \left(1 - \frac{\pi}{4} \right)$$

$$S_{7/4}^{37/4} \left[\cos(x) \sin^{2}(x) dx - \left(\frac{\pi}{2} \right)^{3} \right] = \frac{2}{3} \left(1 - \frac{\pi}{4} \right)$$

$$S_{7/4}^{37/4} \left[\cos(x) \sin^{2}(x) dx - \left(\frac{\pi}{2} \right)^{3} \right] = \frac{2}{3} \left(1 - \frac{\pi}{4} \right)$$

$$S_{7/4}^{37/4} \left[\cos(x) \sin^{2}(x) dx - \left(\frac{\pi}{2} \right)^{3} \right] = \frac{2}{3} \left(1 - \frac{\pi}{4} \right)$$

$$S_{7/4}^{37/4} \left[\cos(x) \sin^{2}(x) dx - \left(\frac{\pi}{2} \right)^{3} \right] = \frac{2}{3} \left(1 - \frac{\pi}{4} \right)$$

$$S_{7/4}^{37/4} \left[\cos(x) \sin^{2}(x) dx - \left(\frac{\pi}{2} \right)^{3} \right] = \frac{2}{3} \left(1 - \frac{\pi}{4} \right)$$

$$S_{7/4}^{37/4} \left[\cos(x) \sin^{2}(x) dx - \left(\frac{\pi}{2} \right)^{3} \right] = \frac{2}{3} \left(1 - \frac{\pi}{4} \right)$$

$$S_{7/4}^{37/4} \left[\cos(x) \sin^{2}(x) dx - \left(\frac{\pi}{2} \right)^{3} \right] = \frac{2}{3} \left(1 - \frac{\pi}{4} \right)$$

$$S_{7/4}^{37/4} \left[\cos(x) \sin^{2}(x) dx - \left(\frac{\pi}{2} \right)^{3} \right] = \frac{2}{3} \left(1 - \frac{\pi}{4} \right)$$

$$S_{7/4}^{37/4} \left[\cos(x) \sin^{2}(x) dx - \left(\frac{\pi}{2} \right)^{3} \right] = \frac{2}{3} \left(1 - \frac{\pi}{4} \right)$$

$$S_{7/4}^{37/4} \left[\cos(x) \sin^{2}(x) dx - \left(\frac{\pi}{2} \right)^{3} \right] = \frac{2}{3} \left(1 - \frac{\pi}{4} \right)$$

$$S_{7/4}^{37/4} \left[\cos(x) \sin^{2}(x) dx - \left(\frac{\pi}{2} \right)^{3} \right]$$

$$S_{7/4}^{37/4} \left[\cos(x) \cos(x) \sin^{2}(x) dx - \left(\frac{\pi}{2} \right)^{3} \right]$$

$$S_{7/4}^{37/4} \left[\cos(x) \cos(x) \sin^{2}(x) dx - \left(\frac{\pi}{2} \right)^{3} \right]$$

$$S_{7/4}^{37/4} \left[\cos(x) \cos(x) \sin^{2}(x) dx - \left(\frac{\pi}{2} \right)^{3} \right]$$

$$S_{7/4}^{37/4} \left[\cos(x) \cos(x) \sin^{2}(x) dx - \left(\frac{\pi}{2} \right)^{3} \right]$$

$$S_{7/4}^{37/4} \left[\cos(x) \cos(x) \cos(x) dx - \left(\frac{\pi}{2} \right)^{3} \right]$$

$$S_{7/4}^{37/4} \left[\cos(x) \cos(x) \cos(x) dx - \left(\frac{\pi}{2} \right)^{3} \right]$$

$$S_{7/4}^{37/4} \left[\cos(x) \cos(x) \cos(x) dx - \left(\frac{\pi}{2} \right)^{3} \right]$$

$$S_{7/4}^{37/4} \left[\cos(x) \cos(x) \cos(x) dx - \left(\frac{\pi}{2} \right)^{3} \right]$$

- 4. (8 pts) Consider the integral $\int_1^7 \sin(\sqrt{x}) dx$.
 - (a) Approximate this integral using the right endpoint method with n=4 subdivisions. Show your work by writing out all the terms of the sum, then give the decimal value of the approximation.

$$\Delta x = \frac{7-1}{4} = \frac{3}{2} : x_0 = 1, x_1 = \frac{5}{2}, x_2 = 4, x_3 = \frac{1}{2}, x_4 = 7$$

$$R_4 = \frac{4}{2} + f(x) = x$$

$$\sin(\sqrt{2}) = \frac{3}{2} + \sin(\sqrt{4}) = \frac{3}{2} + \sin(\sqrt{2}) = \frac{3}{2} + \sin(\sqrt{4}) = \frac{3}{2}$$

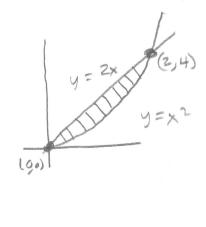
$$\approx \left[\frac{4}{2} + \frac{64}{4} + \frac{32}{4} + \frac{3}{4} + \frac{3}$$

(b) In terms of n in general, write out the formal Reimann sum definition (involving a limit and sigma notation) using the right endpoint method for the integral.

$$dx = \frac{7-1}{n} = \frac{6}{n}$$
 $x_1 = 1 + \frac{6i}{n}$

$$S_{1}^{7} \sin(\sqrt{x}) dx = \lim_{n \to \infty} \sum_{i=1}^{n} \sin(\sqrt{1 + \frac{6i}{n}}) \frac{6}{n}$$
 $= 5.0034465$

- 5. (15 points) Consider the region, R, bounded by the curve y = 2x and $y = x^2$.
 - (a) (5 pts) Give the area of the region.



(b) (5 pts) Does the line y = 1 divide the region R in half? (Justify with at least one integral calculation).

So
$$\sqrt{y} - \frac{1}{2}y dy = \frac{3}{3}y^{\frac{3}{2}} + \frac{1}{4}y^{\frac{3}{2}}|_{0}$$

$$= \frac{2}{7} - \frac{1}{4} = \frac{8}{12} - \frac{3}{12}$$

$$= \frac{7}{12} \neq \frac{1}{2} (\frac{4}{3})$$

1, y=1 does not divide the rigion in half

(c) (5 pts) Set up AND evaluate and integral for the volume of the solid obtained by rotating R about the x-axis.

$$\int_{0}^{2} \pi (2x)^{2} - \pi (x^{2})^{2} dx$$

$$\pi \int_{0}^{2} 4x^{2} - x^{4} dx$$

$$\pi \left[\frac{4}{3} x^{3} - \frac{1}{5} x^{5} \right]_{0}^{2}$$

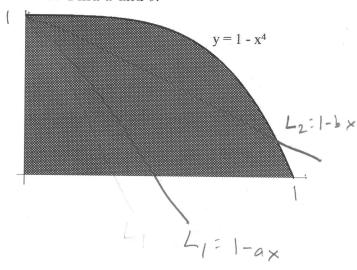
$$\pi \left[\frac{4}{3} \cdot 8 - \frac{1}{3} \cdot 32 \right] = \pi \left[\frac{3}{3} - \frac{3}{5} \right] = 32\pi \left[\frac{1}{3} - \frac{1}{3} \right]$$

$$= \frac{64\pi}{15} \approx 13.404128655$$

6. (12 pts) Dr. Loveless is baking again. He has made a cake in shape of the region bounded in the first quadrant by $y = 1 - x^4$ (shown in the picture). He says if you can cut the cake in thirds, he'll eat a third, you'll eat a third and you can throw the last third in his face. BUT, you must cut it using two lines of the form y = 1 - ax and y = 1 - bx. Find a and b.

TOTAL AMEA

= $S_0' | -x^4 dx$ = $x - \frac{1}{5} \times \frac{5}{0}$ = $1 - \frac{1}{5} = \frac{4}{5}$



(L1) AREA = $\frac{1}{2}$ BASE - HEIGHT TAKE $\frac{1}{15} = \frac{1}{2}$ BASE - HEIGHT

So Slope = $-\frac{1}{8}$ / $= -\frac{15}{8}$

LESS THAN 3. 45 = \$

INTERSECT: 1-bx=1-x4 $\Rightarrow b=x^2\Rightarrow x=b^3$ and $y=1-b^{4/3}$

$$\int_{0}^{5/3} (1-x^{4}) - (1-bx)dx = \int_{0}^{5/3} -x^{4} + b \times dx$$

$$= -\frac{1}{5}x^{5} + \frac{1}{2}x^{2} \Big|_{0}^{5/3}$$

$$= -\frac{1}{5}b^{5/3} + \frac{1}{2}b^{5/3} = b^{5/3}(-\frac{1}{5} + \frac{1}{2}) = \frac{3}{10}b^{5/3} = 0.9317694917$$