1. (10 pts) Evaluate the integrals.
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4. (B pts) A long wall is in the shape of region between f(z) = 1 + e(==*/4) and the y-axis. Two
painters start at the origin. One moves in the positive z-direction at a constant rate of 2
feet/minute. The other moves in the negative z-direction at a constant rate of 3 feet /minute.
They paint the region of the fall in front of them as they go. (The picture below depicts the
painted region after ¢ = 1 minute).

(a) (3 pts) |
Set up an integral (DO NOT EVALUATE)
that gives the area of the wall painted re-
gion of the wall after ¢ minutes. (Hint:
Your answer will contain the variable t).
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(b) (5 pts) At what rate is the area of the painted region changing at ¢ = 2 minutes?
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2. (Bpts) Evaluate / 'cos(ac) sin2(x)l dx
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4. (8 pts) Consider the integral / sin(v/z) dz.
1

(a) Approximate this integral using the right endpoint method with n = 4 subdivisions. Show
your work by writing out all the terms of the sum, then give the decimal value of the

approximation.
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(b) In terms of n in general, write out the formal Reimann sum definition (involving a limit and
sigma notation) using the right endpoint method for the integral.
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5. (15 points) Consider the region, R, bounded by the curve y =2z and y = 2°.

(a) (5 pts) Give the area of the region.
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(b) (5 pts) Does the line y = 1 divide the region R in half? (Justify with at least one integral

calculation).
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(¢) (5 pts) Set up AND evaluate and integral for the volume of the solid obtained by rotating R

about the z-axis.




6. (12 pts) Dr. Loveless is baking again. He has made a cake in shape of the region bounded in the
first quadrant by y = 1 — z* (shown in the picture). He says if you can cut the cake in thirds,
he’ll eat a third, you'll eat a third and you can throw the last third in his face. BUT, you must
cut it using two lines of the form y =1 — az and y = 1 — bz. Find @ and b.
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