February 24, 2011

Name: \qquad
Section: \qquad
Student ID Number: \qquad

PAGE 1	12	
PAGE 2	12	
PAGE 3	14	
PAGE 4	12	
PAGE 5	10	
Total	60	

- There are 5 pages of questions. Make sure your exam contains all these pages.
- You are allowed to use a scientific calculator (no graphing calculators) and one hand-written 8.5 by 11 inch page of notes.
- You must show your work on all problems. The correct answer with no supporting work may result in no credit. Put a box around your FINAL ANSWER for each problem and cross out any work that you don't want to be graded. Give exact answers wherever possible.
- If you need more room, use the backs of the pages and indicate to the grader that you have done so.
- Raise your hand if you have a question.
- Any student found engaging in academic misconduct will receive a score of 0 on this exam.
- You have 80 minutes to complete the exam. Budget your time wisely.

SPEND NO MORE THAN 15 MINUTES PER PAGE!

1. (12 points) Compute the following integrals.
(a) $\int \sec ^{4}(x) \tan ^{3}(x) d x$.
(b) $\int_{1}^{4} \sqrt{y} \ln (\sqrt{y}) d y$
2. (12 points) Compute the following integrals.
(a) $\int \frac{4 x-15}{x^{3}-5 x^{2}} d x$.
(b) $\int \frac{x}{\sqrt{x^{2}+8 x+25}} d x$.
3. (14 points) Answer the following questions.
(a) (6 pts) Find the average value of $f(x)=\tan ^{-1}(3 x)$ on the interval $x=0$ to $x=\frac{1}{3}$.
(b) (8 pts) Consider the arc length of the curve $y=x^{3}$ from $x=0$ to $x=4$.
i. Set up (BUT DO NOT EVALUATE) an integral for this length.
ii. Use Simpson's Method with $n=4$ subintervals to approximate the value of the arc length. (Show your work)
4. (12 points)
(a) Determine if the improper integral $\int_{1}^{\infty} \frac{\sin \left(\frac{1}{x}\right)}{x^{2}} d x$ converges or diverges. If it diverges, explain why. If it converges, give the value it approaches.
(b) Determine if the improper integral $\int_{0}^{1} x^{-1} \ln (x) d x$ converges or diverges. If it diverges, explain why. If it converges, give the value it approaches.
5. (10 points) Consider the region R in the first quadrant of the $x y$-plane bounded by $y=x^{2}, y=4$ and the y-axis. The water in a full tank is in the shape of the solid obtained by rotating R about the y-axis.

Assume all lengths are in meters, so the tank is 4 meters high. And remember the density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
Set up and evaluate an integral for the work required to pump all the water to the top of the tank and over the edge.

