Printout

[^0]1. (12 pts) Evaluate the following integrals

$$
\text { (a) } \begin{aligned}
\int_{1}^{8} 3+\frac{2}{x^{2 / 3}} d x & =\int_{1}^{8} 3+2 x^{-2 / 3} d x \\
& =3 x+\left.2 \cdot 3 x^{1 / 3}\right|_{1} ^{8} \\
& =\left(3(8)+6(8)^{1 / 3}\right)-\left(3(1)+6(1)^{1 / 2}\right) \\
& =24+6 \cdot 2-9 \\
& =\sqrt{27}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } \int \frac{x^{2}}{\cos ^{2}\left(x^{3}\right)} d x \\
& \int \frac{x^{2}}{\cos ^{2}(x)} \frac{1}{3 x x^{x}} d x \\
& \frac{1}{3} \int \frac{1}{\cos ^{2}(u)} d x \\
& \frac{1}{3} \int \sec ^{2}(u) d x=\frac{1}{3} \tan (x)+C \\
& =\frac{1}{3} \tan \left(x^{3}\right)+C
\end{aligned}
$$

2. (12 pts) Evaluate the following integrals
(a) $\int x^{3}\left(4-x^{2}\right)^{6} d x$

$$
\begin{aligned}
& u=4-x^{2} \\
& d u=-2 x d x
\end{aligned} \Leftrightarrow x^{2}=4-u
$$

$$
\int x^{3} u^{6} \frac{1}{-2 x} d u
$$

$$
-\frac{1}{2} \int(4-u) u^{6} d u
$$

$$
-\frac{1}{2} \int 4 u^{6}-u^{7} d u
$$

$$
=-\frac{1}{2}\left(\frac{4}{7} u^{7}-\frac{1}{8} u^{8}\right)+C
$$

$$
=-\frac{2}{7}\left(4-x^{2}\right)^{7}+\frac{1}{16}\left(4-x^{2}\right)^{8}+C
$$

$$
\begin{aligned}
& \text { (b) } \int_{1 / 4}^{1} \frac{\cos (\pi \sqrt{x})}{\sqrt{x}} d x \\
& \int_{\pi / 2}^{\pi} \frac{\cos (u)}{\sqrt{x}} \frac{2}{\pi} \sqrt{x} d u
\end{aligned}
$$

$$
\begin{aligned}
& u=\pi \sqrt{x} \\
& d u=\frac{\pi}{2 \sqrt{x}} d x \\
& d x=\frac{2}{\pi} \sqrt{x} d u
\end{aligned}
$$

$$
\frac{2}{\pi} \int_{-\pi / 2}^{\pi} \cos (n) d u
$$

$\frac{2}{\pi}\left(\sin (4)\binom{\pi}{\pi / 2}=\right.$

$$
=-\frac{2}{\pi}
$$

3. The two parts below are separate unrelated problems.
(a) (6 pts) The top of a wall is in the shape of $y=e^{-x^{2}}$ and the bottom is the x-axis, where x and y are in feet. The wall is being painted in such a way that the area covered at time t minutes is given by

$$
A(t)=\int_{-2 t}^{\frac{1}{3} t} e^{-\frac{1}{6} x^{2}} d x
$$

Find the rate at which the wall is being painted at $t=2$ minutes.
That is, find derivative of $A(t)$ at $t=2$. (Give units)

$$
\begin{aligned}
A^{\prime}(2) & =\frac{1}{3} e^{-\frac{1}{54}(4)}+2 e^{-\frac{2}{3} \cdot(4)} \\
& =\frac{1}{3} e^{-\frac{2}{27}}+2 e^{-8 / 3} \frac{\mathrm{ft}^{2}}{\text { min } \approx 0.4485 \mathrm{ft}} \mathrm{~min}
\end{aligned}
$$

(b) (6 pts) Use the left-endpoint rule with $n=3$ subdivisions to approximate the area of the region bounded by $y=4-x^{2}$ in the first quadrant (the first quadrant is where $x \geq 0$ and $y \geq 0$). Write out your work and give your final answer as a decimal to 4 digits after the decimal point.

$$
\begin{aligned}
& \int_{0}^{2} 4-x^{2} d x \\
& \Delta x=\frac{2-0}{3}=\frac{2}{3} \\
& x_{0}=0, x_{1}=\frac{2}{3}, x_{2}=\frac{4}{3}, x_{3}=2 \\
& =\frac{\Delta x\left[f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)\right]}{}=\frac{2}{3}\left[4-(0)^{2}+4-\left(\frac{2}{3}\right)^{2}+4-\left(\frac{4}{3}\right)^{2}\right] \\
& =\left[12-\frac{4}{9}-\frac{16}{9}\right]=\frac{2}{3}\left[12-\frac{20}{9}\right]=\frac{2}{3} \frac{88}{9}=\frac{176}{27} \\
& \text { ASIDE: ACTUAL VALUE }=\frac{16}{3}=5 . \overline{3}
\end{aligned}
$$

4. (a) (6 pts) Find a function $f(x)$ such that $f^{\prime \prime}(x)=6 x^{2}-\sin (x)$, with $f\left(\frac{\pi}{2}\right)=\frac{3 \pi}{2}$ and $f^{\prime}(0)=4$.

$$
\begin{aligned}
& f^{\prime}(x)=2 x^{3}+\cos (x)+C \\
& f^{\prime}(0)=4 \Rightarrow 2(0)^{3}+\operatorname{ccs}(0)+c=4 \\
& 1+c=4 \Rightarrow c=3 \\
& f(x)=\frac{2}{4} x^{4}+\sin (x)+3 x+D \\
& f(\pi / 2)=3 \pi / 2 \Rightarrow \frac{1}{2}(\pi / 2)^{4}+\sin (\pi / 2)+\frac{3 \pi}{2}+D=3 \pi / 2 \\
& D=-1-\frac{\pi^{4}}{32} \\
& f(x)=\frac{1}{2} x^{4}+\sin (x)+3 x-1-\frac{\pi^{4}}{32}
\end{aligned}
$$

(b) (6 pts) You are standing on top of a tall building exactly 200 meters above your math instructor. You 'accidentally' throw a water balloon straight down. The water balloon lands on your unsuspecting instructor's head after exactly 4 seconds. At what initial velocity did you throw the balloon? (Assume acceleration is a constant $-9.8 \mathrm{~m} / \mathrm{sec}^{2}$).

$$
\begin{aligned}
& a(t)=-9.8 \\
& v(t)=-9.8 t+c \\
& S(t)=-4.9 t^{2}+C t+D \\
& S(0)=200 \Rightarrow D=200 \Rightarrow S(t)=-4.4 t^{2}+c t+200 \\
& S(4)=0 \Rightarrow-4.9(4)^{2}+C(4)+200=0 \\
& 4 c=78.4-200 \\
& c=-\frac{121.6}{4}=-30,4 \\
& V(0)=-30.4 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

5. (12 points) Consider the region, R, bounded by the curve $y=x^{4}$, the vertical line $x=2$, and the x-axis.
(a) $(1 \mathrm{pts})$ Sketch the region R.

(b) (5 pts) Find the value of a, such that the vertical line $x=a$ would divide the region R into two regions of equal area.

$$
\begin{aligned}
& \text { TOTAL }=\int_{0}^{2} x^{4} d x=\left.\frac{1}{5} x^{5}\right|_{0} ^{2}=\frac{32}{5} \\
& \int_{0}^{a} x^{4} d x=\frac{1}{2} \frac{31}{5} \\
& \left.\frac{1}{5} x^{5}\right|_{0} ^{a}=\frac{16}{5} \\
& \frac{1}{5} a^{5}=\frac{16}{5} \\
& a^{5}=16 \\
& a=16)^{1 / 5} \approx 1.741101127
\end{aligned}
$$

(c) (6 pts) A solid is obtained by rotating the region R around the horizontal line $y=-3$. Set up BOTH of the integrals you get from the cylindrical shells and washer methods. (DO NOT EVALUATE)

SHELLS: $\int_{0}^{16} 2 \pi(y+3)\left(2-y^{1 / 4}\right) d y=\frac{4288 \pi}{45}$
WASHERS: $\int_{0}^{2} \pi\left(3+x^{4}\right)^{2}-\pi(3)^{2} d x$

[^0]: Monday, April 17, 2017
 8:40 AM

