Math 125 - Spring 2006
Exam 1
April 20, 2006

Name: __

Section: __

Student ID Number: ________________________________

TA’s Name: __

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
</tr>
</tbody>
</table>

• You are allowed to use a basic scientific calculator (NO graphing calculators)
• You may use one **hand-written** 8.5 by 11 inch page of notes. Put your name on your sheet of notes and turn it in with the exam.
• Check that your exam contains all the problems listed above.
• You must show your work on all problems. The correct answer with no supporting work may result in no credit.
• Box in your final answer.
• When appropriate, round your final answer to two decimal places after the decimal.
• Any student found engaging in academic misconduct will receive a score of 0 on this exam.
• You have 80 minutes to complete the exam.

GOOD LUCK!
1. Evaluate the following indefinite integrals.

(a) (5 points) \[\int \frac{\sin(4 + \ln(y))}{y} \, dy \]

(b) (5 points) \[\int x^3 \sqrt{18 - x^2} \, dx \]
2. Evaluate the following definite integrals.

(a) (5 points) \[\int_1^e \frac{\sqrt{x} + 3x}{x^2} \, dx \]

(b) (5 points) \[\int_0^{\pi/2} \cos(x) (\sin(x))^{1/3} \, dx \]
3. A particle is moving on a straight line with acceleration given by \(a(t) = -2t + 1 \) and initial velocity \(v(0) = 2 \).

(a) (3 points) Find the velocity, \(v(t) \), for the particle at time \(t \).

(b) (3 points) Find the displacement of the particle from \(t = 0 \) to \(t = 3 \).

(c) (3 points) Find the total distance traveled by the particle from \(t = 0 \) to \(t = 3 \).
4. (6 points)

The graph to the right illustrates the region bounded by the two curves

\[x = 2y \quad \text{and} \quad y = -x^2 + 3.5x + 4. \]

Find the area of this region.

5. (5 points) Use the midpoint rule with \(n = 3 \) rectangles to approximate the value of the integral:

\[\int_{0}^{6} \sqrt{x^3 + 1} \, dx \]
6. Consider the region bounded by the curves \(y = x^2 \) and \(y = 3x \) and answer the following.

(a) (5 points) Using the method of cylindrical shells, express the volume of the solid of revolution obtained when this region is rotated around the \(y \)-axis in terms of a definite integral. DO NOT EVALUATE THE INTEGRAL.

(b) (5 points) Express the volume of the solid of revolution obtained when this region is rotated around the horizontal line \(y = -2 \) in terms of a definite integral. DO NOT EVALUATE THE INTEGRAL.