

7.2: Trig Integrals Review - Dr. Loveless

1. SINES AND COSINES

- (a) If $\sin(x)$ or $\cos(x)$ is to an odd power. Factor out a term from the odd power. Use identity $\sin^2(x) + \cos^2(x) = 1$. Then substitute.
- (b) If $\sin(x)$ and $\cos(x)$ both with even powers: Use $\sin^2(x) = \frac{1}{2}(1 - \cos(2x))$, $\cos^2(x) = \frac{1}{2}(1 + \cos(2x))$.

2. TANGENTS AND SECANTS

- (a) If $\sec(x)$ has an even power. Factor out $\sec^2(x)$. Use identity $\sec^2(x) = \tan^2(x) + 1$. Then substitute.
- (b) If $\tan(x)$ has an odd power (and at least one $\sec(x)$). Factor out $\sec(x) \tan(x)$. Use identity $\tan^2(x) = \sec^2(x) - 1$. Then substitute.

3. EXAMPLES

- *Odd sine.* $\int \sin^3(x) \cos^2(x) dx = \int \sin^2(x) \cos^2(x) \sin(x) dx = \int (1 - \cos^2(x)) \cos^2(x) \sin(x) dx.$
- *Odd cosine.* $\int \sin^4(x) \cos^3(x) dx = \int \sin^4(x) \cos^2(x) \cos(x) dx = \int \sin^4(x)(1 - \sin^2(x)) \cos(x) dx.$
- *Only even powers.* $\int \sin^2(x) dx = \int \frac{1}{2}(1 - \cos(2x)) dx.$
- *Only even powers.* $\int \cos^4(x) dx = \int \left(\frac{1}{2}(1 + \cos(2x))\right)^2 dx = \frac{1}{4} \int (1 + 2\cos(2x) + \cos^2(2x)) dx.$
Now use half-angle on $\cos^2(2x) = \frac{1}{2}(1 + \cos(4x))$.
- *Even secant.* $\int \tan^2(x) \sec^4(x) dx = \int \tan^2(x) \sec^2(x) \sec^2(x) dx = \int \tan^2(x)(\tan^2(x) + 1) \sec^2(x) dx.$
- *Odd tangent.* $\int \tan^3(x) \sec^2(x) dx = \int \tan^2(x) \sec(x) \sec(x) \tan(x) dx = \int (\sec^2(x) - 1) \sec(x) \sec(x) \tan(x) dx.$

4. NOTES

- (a) For $\cot(x)/\csc(x)$ the cases would be nearly identical to $\tan(x)/\sec(x)$.
- (b) If you are stuck, try changing everything to $\sin(x)$ and $\cos(x)$ (or changing everything to $\sec(x)$ and $\tan(x)$). If you are still stuck, look at all your trig identities and rewrite the integral in another way.
- (c) And **remember** that we have added the following to our table of known integrals (use these, you don't have to derive them):

$$\int \tan(x) dx = \ln |\sec(x)| + C \text{ (in 5.5)}$$

$$\int \sec(x) dx = \ln |\sec(x) + \tan(x)| + C \text{ (in 7.2)}$$

$$\int \sec^3(x) dx = \frac{1}{2}(\sec(x) \tan(x) + \ln |\sec(x) + \tan(x)|) + C \text{ (in 7.2)}$$

- (d) *Side-note on integrating waves of different frequencies:* We won't integrate waves with different frequencies in this course, but if you ever have to, these product identities are very useful:

$$\sin(A) \cos(B) = \frac{1}{2}(\sin(A - B) + \sin(A + B))$$

$$\sin(A) \sin(B) = \frac{1}{2}(\cos(A - B) - \cos(A + B))$$

$$\cos(A) \cos(B) = \frac{1}{2}(\cos(A - B) + \cos(A + B))$$

$$\text{For example: } \int \sin(3x) \cos(2x) dx = \int \frac{1}{2}(\sin(x) + \sin(5x)) dx.$$