

6.3 Volumes by Cylindrical Shells

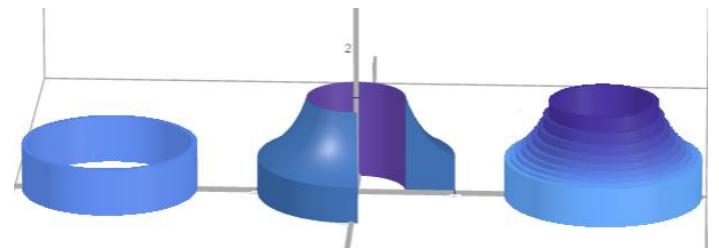
Motivational Example:

Let R be the region bounded by

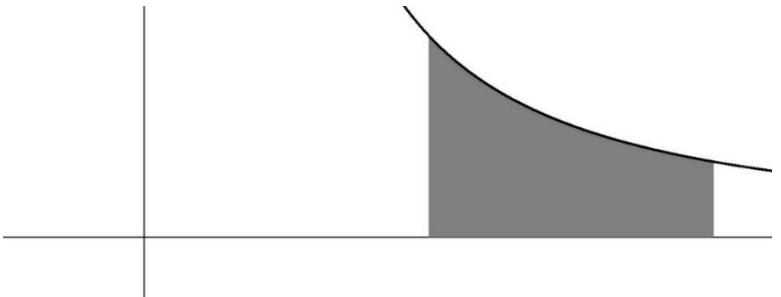
$$y = \frac{1}{x^2} + \frac{1}{x}, y = 0, x = 1, x = 2.$$

Consider the solid obtained by rotating about the **y-axis**.

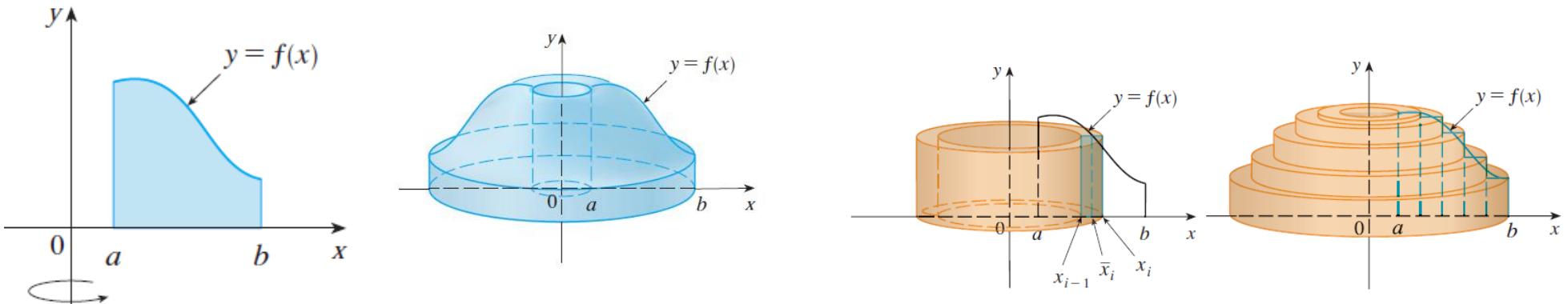
Try to use cross-sectional slicing... why is this difficult/messy?



<https://www.desmos.com/3d/rtbnpyq6hh>



Visual Motivation: Consider the solid



Derivation

Volume of one thin shell

$$\begin{aligned} &\approx (\text{surface area})(\text{thickness}) \\ &= \text{SA}(x_i) \Delta x \\ &= 2\pi(\text{radius})(\text{height})(\text{thickness}) \end{aligned}$$

$$\text{Total Volume} \approx \sum_{i=1}^n \text{SA}(x_i) \Delta x$$

$$\text{Exact Volume} = \lim_{n \rightarrow \infty} \sum_{i=1}^n \text{SA}(x_i) \Delta x$$

Thus,

$$\begin{aligned} \text{Volume} &= \int_a^b \text{SA}(x) dx \\ &= \int_a^b 2\pi(\text{radius})(\text{height}) dx \end{aligned}$$

Volume using cylindrical shells

1. Draw region. “Cut” **parallel** to rotation axis.

Label x if cut crosses the x -axis.

Label y if cut crosses the y -axis.

Label **everything** in terms this variable.

2. Surface area of cylindrical shell?

$$\begin{aligned} \text{SA} &= (\text{Circumference})(\text{Height}) \\ &= 2\pi(\text{Radius})(\text{Height}) \end{aligned}$$

Fill in with labels from graph.

3. Integrate the SA formula.

$$\text{Volume} = \int_a^b 2\pi(\text{radius})(\text{height})dx$$

Example:

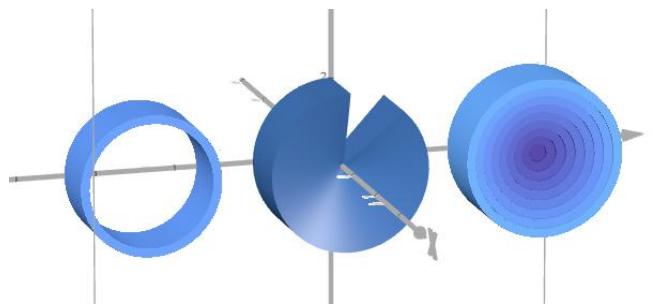
Let R be the region bounded by

$$y = \frac{1}{x^2} + \frac{1}{x}, y = 0, x = 1, x = 2.$$

Set up an integral for the volume obtained by rotating R about the **y-axis**.

Example: Let R be the region in the first quadrant that is bounded by $x = \sqrt{y + 1}$ and $y = 1$.

Find the volume obtained by rotating R about the **x -axis**.



<https://www.desmos.com/3d/ve4nqt91ak>

Flow chart of all Volume of Revolution Problems

Step 0: Draw an accurate picture!!! (Always draw a picture)

Step 1: Choose and *label* the variable (based on the region and given equations)

If x , draw a typical **vertical** thin approximating rectangle at x .

If y , draw a typical **horizontal** thin approximating rectangle at y .

Step 2: Is the approximating rectangle *perpendicular* or *parallel* to the rotation axis?

Perpendicular \rightarrow *Cross-sections*:

$$\text{Volume} = \int_a^b (\pi(\text{outer})^2 - \pi(\text{inner})^2)(dx \text{ or } dy)$$

Parallel \rightarrow *Shells*:

$$\text{Volume} = \int_a^b 2\pi(\text{radius})(\text{height})(dx \text{ or } dy)$$

Step 3: Write everything in terms of the desired variable and fill in patterns.

Then integrate.

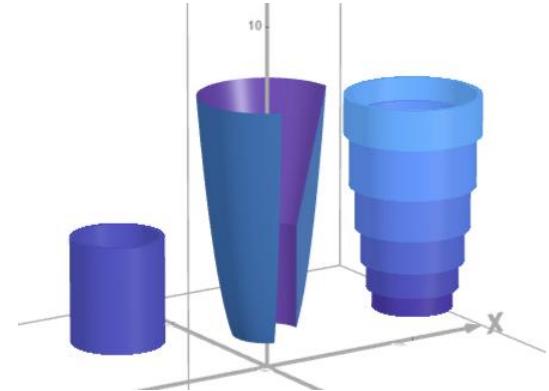
If you are still having trouble seeing which variable goes with which method here is a summary:

Axis of rotation	Disc/Washer	Shells
x-axis (or any horizontal axis)	dx	dy
y-axis (or any vertical axis)	dy	dx

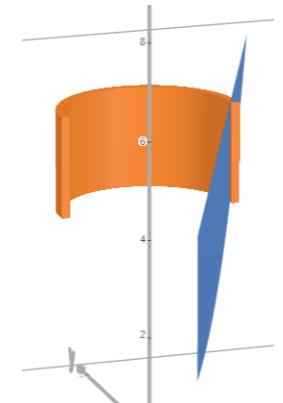
Example 1:

Let R be the region bounded by $y = x^3$, $y = 4x$ between $x = 1$ and $x = 2$.

Set up an integral for the volume of the solid obtained by rotating R about the **y-axis**.



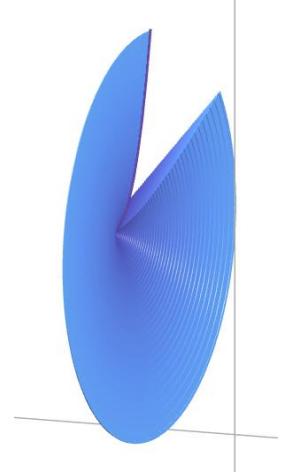
<https://www.desmos.com/3d/opdtsrdoxa>



Example 2: Same region, different axis

Let R be the region bounded by $y = x^3$, $y = 4x$ between $x = 1$ and $x = 2$.

Set up an integral for the volume of the solid obtained by rotating R **about the x-axis**.



<https://www.desmos.com/3d/x86yrs3hf5>

Example 3: Same region again, different axis

Let R be the region bounded by $y = x^3$, $y = 4x$ between $x = 1$ and $x = 2$.

Set up an integral for the volume of the solid obtained by rotating R **about the vertical line $x = 3$** .

<https://www.desmos.com/3d/opdtsrdoxa>