6.4 Work – Quick Summary

Some unit facts

g = grams, kg = kilograms,

cm = centimeter

in = inches, yd = yards, mi = miles

1000 g = 1 kg

100 cm = 1 meter

12 inches = 1 foot

3 feet = 1 yard

5280 ft = 1 mile

force = $mass \cdot acceleration$

	Metric	Standard
Mass	Кg	
Accel.	9.8 m/s ²	32 ft/s ²
Force	Newtons = $N = kg \cdot m/s^2$	pounds = lbs
Dist.	m = meters	ft = feet
Work	Joules =J = N⋅m	foot-pounds = ft-lbs

Note: Given kilograms (mass), you must multiply by 9.8 m/s² to get

corresponding the force (in Newtons) on Earth.

Pounds (lbs) is already a force, do NOT multiply by acceleration

due to gravity.

Basic Work Concept: For a constant force moved a certain distance: Work = Force \cdot Distance If force and/or distance are changing, then we find a pattern for force and distance and compute:

Work =
$$\lim_{n\to\infty} \sum_{i=1}^{n} (FORCE)(DIST) = \int_{a}^{b} (FORCE)(DIST)$$

For all problems:

Step 0: Label and draw a picture of the start and end of the task.

Problem type 1: ("Leaky bucket") In these problems, the pattern for force is given or we can find it.

The force changes every small moment (Dist = Δx) as the object is moved.

FORCE = $f(x_i)$, DISTANCE = Δx , WORK = $\int_a^b f(x) dx$

Leaking at constant rate $\rightarrow f(x) = mx + b$

Or force is given

 $\rightarrow f(x) = \text{force}$

Step 1: Find the formula for force.

Step 2: Integrate to get work.

Problem type 2: ("Stack of Books" - Chain/pumping) In these problems, we find the weight of a slice at a given height and we find the formula for the distance that slice will move.

FORCE = weight of a horizontal slice = (density)(width of slice) or (density)(volume of slice)

DIST = distance moved by that slice

For chain: k = density = force per distance

FORCE = weight of slice = $k\Delta x$

DIST = distance moved by slice (typically x if you label like me)

WORK = $\int_0^b x \, k dx$

k = density = weight per volume For pumping:

FORCE = k volume = $k(hor. slice area)\Delta y$

DIST = distance moved by slice (typically a-y if you label like me)

WORK = $\int_0^b (a-y)k(horizontal\ slice\ area)dy$

Step 1: Label a typical horizontal slice. Find the formulas for weight of that slice and the distance that slice will move from start to finish.

Step 2: Integrate to get work.