Summary of Max/Min Facts

ORIGINAL $(f(x))$	DERIVATIVE $(f'(x))$	SECOND DERIVATIVE $(f''(x))$
f(x) = height of original at x	f'(x) = slope of original at x	
increasing (uphill left-to-right)	positive (above x-axis)	
decreasing (downhill left-to-right)	negative (below x -axis)	
horizontal tangent	zero (crosses x-axis)	
concave up		positive
concave down		negative
possible inflection point		zero

Here is how we analyze critical points and points of inflection using calculus.

Step 1: What is the domain? (Is the domain given? Any places where the original function is not defined?).

Step 2: Find all the critical numbers.

We defined a **critical number** of f(x) to be any number x = c that is in the domain of f(x) such that

- 1. f'(c) = 0, or
- 2. f'(c) does not exist.

Note: x = c has to be in the domain to be called a critical number.

Step 3a: If you are asked to find the absolute (global) maximum or minimum of f(x) over a given domain.

- 1. Find the critical numbers.
- 2. Evaluate f(x) at the critical numbers.
- 3. Evaluate f(x) at the endpoints.
- 4. Conclusion:

Biggest output = the absolute max and it occurs at the corresponding x value(s). Smallest output = the absolute min and it occurs at the corresponding x value(s).

Step 3b: If you are asked to classify the critical points as local max, local min or neither, then:

Option 1: The First Derivative Test If x = c is a critical point of f(x) and

- 1. If f'(x) changes from negative to positive at x=c, then x=c corresponds to a local minimum of f.
- 2. If f'(x) changes from positive to negative at x=c, then x=c corresponds to a local maximum of f.
- 3. If f'(x) does not change at x = c, then x = c is not a local max and not a local min of f.

Option 2: The Second Derivative Test If x = c is a critical point of f(x) and

- 1. If f''(c) > 0, then x = c corresponds to a local minimum of f.
- 2. If f''(c) < 0, then x = c corresponds to a local maximum of f.
- 3. If f''(c) = 0 or if f''(c) does not exist, then the test is inconclusive (we can't conclude if x = c is a local max/min or neither based on this information alone).

Step 4: Points of inflection.

A function is **concave up** at x if the tangent line is below the curve at x (so f''(x) > 0).

A function is **concave down** at x if the tangent line is above the curve at x (so f''(x) < 0).

Any point where the graph changes concavity is called a **point of inflection**.

Point of Inflection Test:

First solve for all places in the domain where f''(x) = 0 or f''(x) does not exist.

If x = c is a point where f''(x) = 0 or f''(x) does not exist, then

if f''(x) changes sign (pos-to-neg or neg-to-pos) at x = c, then x = c gives a point of inflection.

At the end of a calculus course, every student should be able to quickly analyze any function and get the basic shape and features. Here are three basic examples:

1. Analyze the function $f(x) = x^4 - 2x^3$.

First Derivative Facts:

(a) Critical Points: First, we find $f'(x) = 4x^3 - 6x^2$. Solving gives

$$4x^3 - 6x^2 = 0,$$
 factoring out x^2 gives $x^2(4x - 6) = 0$ simplifying gives $x = 0$ or $6/4$

We get two critical numbers x = 0 and $x = \frac{6}{4} = \frac{3}{2} = 1.5$.

(b) Number Line: We plug in -1, 1, and 2 (or any values before 0, between 0 and 1.5, and after 1.5) to the derivative and find that f'(-1) = -10 is negative, f'(1) = -2 is negative, and f'(2) = 8 is positive. We summarize:

Second Derivative Facts:

(a) Possible Points of Inflection: First, we find $f''(x) = 12x^2 - 12x$. Solving gives:

$$12x^2 - 12x = 0$$
, factoring out $12x$ gives $12x(x-1) = 0$

We get two possible points of inflection x = 0 and x = 1.

(b) Number Line: We plug in -1, 1/2 and 2 (or any values before 0, between 0 and 1, and after 1) to the second derivative and find that f''(-1) = 24 is positive, f''(1/2) = -3 is negative and f''(2) = 24 is positive. We summarize:

f concave up	f concave down	f concave up
f" pos	0 f" neg 1	f" pos

Summary: x = 1.5 gives a local minimum, x = 0 and x = 1 give points of inflection (Note x = 0 is a horizontal point of inflection). And we should be able to roughly sketch the shape of the function (for a more accurate sketch, plug these values back into the original function to get the corresponding y values):

2. Analyze the function $f(x) = x^3 - 12x$.

First Derivative Facts:

- (a) Critical Points: First, we find $f'(x) = 3x^2 12$. Solving $3x^2 12 = 0$ gives $x^2 = 4$. Thus, x = -2 and x = 2 are the critical numbers.
- (b) Number Line: We plug in -3, 0, and 3 to the derivative and find that f'(-3) is positive, f'(0) is negative, and f'(3) is positive. We summarize:

Second Derivative Facts:

- (a) Possible Points of Inflection: First, we find f''(x) = 6x. Solving 6x = 0 gives x = 0. Thus, x = 0 is the only possible point of inflection.
- (b) Number Line: We plug in -1 and 1 to the second derivative and find that f''(-1) is negative and f''(1) is positive. We summarize:

Summary: x = -2 gives a local maximum, x = 2 gives a local minimum and x = 0 gives a point of inflection. And we should be able to roughly sketch the shape of the function (for a more accurate sketch, plug these values back into the original function to get the corresponding y values):

3. Analyze the function $f(x) = \frac{1}{x} - \frac{5}{x^2}$ for values x > 0.

First Derivative Facts:

(a) Critical Points: First, since $f(x) = x^{-1} - 5x^{-2}$, we have $f'(x) = -x^{-2} + 10x^{-3}$. We simplify to get $f'(x) = -\frac{1}{x^2} + \frac{10}{x^3}$ and try to solve:

$$-\frac{1}{x^2} + \frac{10}{x^3} = 0,$$
 multiplying by x^3 gives

$$-x + 10 = 0$$
 simplifying gives

$$x = 10$$

(b) Number Line: We plug in 1 and 15 (anything between 0 and 10 and anything after 10) to the derivative and find that f'(1) = -1 + 10 = 9 is positive and $f'(15) \approx -0.00148$ is negative. We summarize:

Second Derivative Facts:

(a) Possible Points of Inflection: First, we find $f''(x) = 2x^{-3} - 30x^{-4}$. We simplify to get $f''(x) = \frac{2}{x^3} - \frac{30}{x^4}$ and try to solve:

$$\frac{2}{x^3} - \frac{30}{x^4} = 0,$$
 multiplying by x^4 gives $2x - 30 = 0$ simplifying gives $x = 15$

(b) Number Line: We plug in 10 and 20 (anything between 0 and 15 and anything after 15) to the second derivative and find that f''(10) = -0.001 is negative and f''(20) = 0.000625 is positive. We summarize:

Summary: x = 10 gives a local maximum and x = 15 gives a point of inflection. And we should be able to roughly sketch the shape of the function (for a more accurate sketch, plug these values back into the original function to get the corresponding y values):

