Summary of Max/Min Facts

ORIGINAL $(f(x))$	DERIVATIVE $\left(f^{\prime}(x)\right)$	SECOND DERIVATIVE $\left(f^{\prime \prime}(x)\right)$
$f(x)=$ height of original at x	$f^{\prime}(x)=$ slope of original at x	
increasing (uphill left-to-right)	positive (above x-axis)	
decreasing (downhill left-to-right)	negative (below x-axis)	
horizontal tangent	zero (crosses x-axis)	
concave up		positive
concave down		negative
possible inflection point		zero

Here is how we analyze critical points and points of inflection using calculus.
Step 1: What is the domain? (Is the domain given? Any places where the original function is not defined?).
Step 2: Find all the critical numbers.
We defined a critical number of $f(x)$ to be any number $x=c$ that is in the domain of $f(x)$ such that

1. $f^{\prime}(c)=0$, or
2. $f^{\prime}(c)$ does not exist.

Note: $x=c$ has to be in the domain to be called a critical number.
Step 3a: If you are asked to find the absolute (global) maximum or minimum of $f(x)$ over a given domain.

1. Find the critical numbers.
2. Evaluate $f(x)$ at the critical numbers.
3. Evaluate $f(x)$ at the endpoints.
4. Conclusion:

Biggest output $=$ the absolute max and it occurs at the corresponding x value(s).
Smallest output $=$ the absolute \min and it occurs at the corresponding x value(s).
Step 3b: If you are asked to classify the critical points as local max, local min or neither, then:
Option 1: The First Derivative Test If $x=c$ is a critical point of $f(x)$ and

1. If $f^{\prime}(x)$ changes from negative to positive at $x=c$, then $x=c$ corresponds to a local minimum of f.
2. If $f^{\prime}(x)$ changes from positive to negative at $x=c$, then $x=c$ corresponds to a local maximum of f.
3. If $f^{\prime}(x)$ does not change at $x=c$, then $x=c$ is not a local max and not a local min of f.

Option 2: The Second Derivative Test If $x=c$ is a critical point of $f(x)$ and

1. If $f^{\prime \prime}(c)>0$, then $x=c$ corresponds to a local minimum of f.
2. If $f^{\prime \prime}(c)<0$, then $x=c$ corresponds to a local maximum of f.
3. If $f^{\prime \prime}(c)=0$ or if $f^{\prime \prime}(c)$ does not exist, then the test is inconclusive
(we can't conclude if $x=c$ is a local max/min or neither based on this information alone).

Step 4: Points of inflection.

A function is concave up at x if the tangent line is below the curve at x (so $\left.f^{\prime \prime}(x)>0\right)$.
A function is concave down at x if the tangent line is above the curve at x (so $f^{\prime \prime}(x)<0$).
Any point where the graph changes concavity is called a point of inflection.
Point of Inflection Test:
First solve for all places in the domain where $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}(x)$ does not exist.
If $x=c$ is a point where $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}(x)$ does not exist, then
if $f^{\prime \prime}(x)$ changes sign (pos-to-neg or neg-to-pos) at $x=c$, then $x=c$ gives a point of inflection.

At the end of a calculus course, every student should be able to quickly analyze any function and get the basic shape and features. Here are three basic examples:

1. Analyze the function $f(x)=x^{4}-2 x^{3}$.

First Derivative Facts:
(a) Critical Points: First, we find $f^{\prime}(x)=4 x^{3}-6 x^{2}$. Solving gives

$$
\begin{aligned}
4 x^{3}-6 x^{2} & =0, & & \text { factoring out } x^{2} \text { gives } \\
x^{2}(4 x-6) & =0 & & \text { simplifying gives } \\
x & =0 \text { or } 6 / 4 & &
\end{aligned}
$$

We get two critical numbers $x=0$ and $x=\frac{6}{4}=\frac{3}{2}=1.5$.
(b) Number Line: We plug in $-1,1$, and 2 (or any values before 0 , between 0 and 1.5 , and after 1.5) to the derivative and find that $f^{\prime}(-1)=-10$ is negative, $f^{\prime}(1)=-2$ is negative, and $f^{\prime}(2)=8$ is positive. We summarize:

Second Derivative Facts:
(a) Possible Points of Inflection: First, we find $f^{\prime \prime}(x)=12 x^{2}-12 x$. Solving gives:

$$
\begin{aligned}
12 x^{2}-12 x & =0, \quad \text { factoring out } 12 x \text { gives } \\
12 x(x-1) & =0
\end{aligned}
$$

We get two possible points of inflection $x=0$ and $x=1$.
(b) Number Line: We plug in $-1,1 / 2$ and 2 (or any values before 0 , between 0 and 1 , and after 1) to the second derivative and find that $f^{\prime \prime}(-1)=24$ is positive, $f^{\prime \prime}(1 / 2)=-3$ is negative and $f^{\prime \prime}(2)=24$ is positive. We summarize:

Summary: $x=1.5$ gives a local minimum, $x=0$ and $x=1$ give points of inflection (Note $x=0$ is a horizontal point of inflection). And we should be able to roughly sketch the shape of the function (for a more accurate sketch, plug these values back into the original function to get the corresponding y values):

2. Analyze the function $f(x)=x^{3}-12 x$.

First Derivative Facts:
(a) Critical Points: First, we find $f^{\prime}(x)=3 x^{2}-12$. Solving $3 x^{2}-12=0$ gives $x^{2}=4$. Thus, $x=-2$ and $x=2$ are the critical numbers.
(b) Number Line: We plug in $-3,0$, and 3 to the derivative and find that $f^{\prime}(-3)$ is positive, $f^{\prime}(0)$ is negative, and $f^{\prime}(3)$ is positive. We summarize:

Second Derivative Facts:
(a) Possible Points of Inflection: First, we find $f^{\prime \prime}(x)=6 x$. Solving $6 x=0$ gives $x=0$. Thus, $x=0$ is the only possible point of inflection.
(b) Number Line: We plug in -1 and 1 to the second derivative and find that $f^{\prime \prime}(-1)$ is negative and $f^{\prime \prime}(1)$ is positive. We summarize:

Summary: $x=-2$ gives a local maximum, $x=2$ gives a local minimum and $x=0$ gives a point of inflection. And we should be able to roughly sketch the shape of the function (for a more accurate sketch, plug these values back into the original function to get the corresponding y values):

3. Analyze the function $f(x)=\frac{1}{x}-\frac{5}{x^{2}}$ for values $x>0$.

First Derivative Facts:
(a) Critical Points: First, since $f(x)=x^{-1}-5 x^{-2}$, we have $f^{\prime}(x)=-x^{-2}+10 x^{-3}$. We simplify to get $f^{\prime}(x)=$ $-\frac{1}{x^{2}}+\frac{10}{x^{3}}$ and try to solve:

$$
\begin{aligned}
-\frac{1}{x^{2}}+\frac{10}{x^{3}} & =0, & & \text { multiplying by } x^{3} \text { gives } \\
-x+10 & =0 & & \text { simplifying gives } \\
x & =10 & &
\end{aligned}
$$

(b) Number Line: We plug in 1 and 15 (anything between 0 and 10 and anything after 10) to the derivative and find that $f^{\prime}(1)=-1+10=9$ is positive and $f^{\prime}(15) \approx-0.00148$ is negative. We summarize:

Second Derivative Facts:
(a) Possible Points of Inflection: First, we find $f^{\prime \prime}(x)=2 x^{-3}-30 x^{-4}$. We simplify to get $f^{\prime \prime}(x)=\frac{2}{x^{3}}-\frac{30}{x^{4}}$ and try to solve:

$$
\begin{aligned}
\frac{2}{x^{3}}-\frac{30}{x^{4}} & =0, & & \text { multiplying by } x^{4} \text { gives } \\
2 x-30 & =0 & & \text { simplifying gives } \\
x & =15 & &
\end{aligned}
$$

(b) Number Line: We plug in 10 and 20 (anything between 0 and 15 and anything after 15) to the second derivative and find that $f^{\prime \prime}(10)=-0.001$ is negative and $f^{\prime \prime}(20)=0.000625$ is positive. We summarize:

Summary: $x=10$ gives a local maximum and $x=15$ gives a point of inflection. And we should be able to roughly sketch the shape of the function (for a more accurate sketch, plug these values back into the original function to get the corresponding y values):

