Closing Tues: 10.2
Closing Fri: $\quad 3.5(1)(2)$

3.5 Implicit Differentiation (continued)

Given any equation of the form:

$$
F(x, y)=0
$$

we think of y as an implicit function of x

$$
F(x, y(x))=0
$$

and differentiate directly (correctly using the chain rule as we go) to find $d y / d x$.

Entry Task: Find the equation for the tangent line to

$$
y^{2}=x
$$

at $(x, y)=(4,-2)$.

Find $d y / d x$.
2. $x e^{y}+\tan (x)+\sin (y)=1$

1. $x^{4} y+y^{3}=x$

Old Midterm Question:

Consider the curve implicitly defined by

$$
\left(x^{3}-y^{2}\right)^{2}+e^{y}=4
$$

Find the (x, y) coordinates of the point A shown (highest point on the curve).

Inverse Functions: We write inverse functions as $y=f^{-1}(x)$ which is
equivalent to $f(y)=x$.
We can implicitly differentiate

$$
\begin{aligned}
\frac{d}{d x}[f(y)=x] & \Rightarrow f^{\prime}(y) \frac{d y}{d x}=1 \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{f^{\prime}(y)}
\end{aligned}
$$

1. $y=\sqrt{x}$
2. $y=\sin ^{-1}(x)$
3. $y=\tan ^{-1}(x)$

$$
\begin{array}{|l|l||}
\hline \frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x}\left(\cos ^{-1}(x)\right)=-\frac{1}{\sqrt{1-x^{2}}} \\
\hline \frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}} & \frac{d}{d x}\left(\cot ^{-1}(x)\right)=-\frac{1}{1+x^{2}} \\
\hline \frac{d}{d x}\left(\sec ^{-1}(x)\right)=\frac{1}{\mathrm{x} \sqrt{x^{2}-1}} & \frac{d}{d x}\left(\csc ^{-1}(x)\right)=-\frac{1}{\mathrm{x} \sqrt{x^{2}-1}} \\
\hline
\end{array}
$$

- Note: The formulas all assume the principal domains as defined in our textbook.

Now you can use these shortcuts.
Exercise: Find $d y / d x$

$$
y=\tan ^{-1}\left(e^{3 x}\right)
$$

3.6 Derivatives of Logarithms and

 Logarithmic DifferentiationQuick test of basic understanding
Solve $3^{x}+1=11$

Recall your logarithm facts:

1. $y=\ln (x) \leftrightarrow e^{y}=x$
2. $e^{\ln (x)}=x \quad$ and $\quad \ln \left(e^{y}\right)=y$
3. $\ln (a b)=\ln (a)+\ln (b)$
$\ln \left(\frac{a}{b}\right)=\ln (a)-\ln (b)$
$\ln \left(x^{n}\right)=\mathrm{n} \ln (x)$
4. $y=\log _{a}(x) \leftrightarrow a^{y}=x$
(so $\ln (x)=\log _{e}(x)$)

Find the derivative of $y=\ln (x)$
Find the derivative of $y=\log _{\mathrm{a}}(x)$

Power functions:

$\frac{d}{d x}\left[(g(x))^{n}\right]=n(g$
Example:
$\frac{d}{d x}\left[\left(x^{3}+2 x\right)^{10}\right]=$

Exponential functions:

$$
\frac{d}{d x}\left[e^{g(x)}\right]=e^{g(x)} g^{\prime}(x)
$$

$$
\frac{d}{d x}\left[a^{g(x)}\right]=a^{g(x)} \ln (a) g^{\prime}(x)
$$

Examples:

$$
\begin{aligned}
\frac{d}{d x}\left[e^{\left(x^{4}-5 x\right)}\right] & = \\
\frac{d}{d x}\left[7^{\left(x^{4}-5 x\right)}\right] & =
\end{aligned}
$$

What if the variable x is in BOTH the

 base and exponent?Example: $y=(3 x+1)^{x}$

Answer: Logarithmic Differentiation
Step 1: Take log of both sides
Step 2: Differentiate implicitly
Step 3: Solve for y^{\prime}.

