Closing Tues:
 10.2

 Closing Fri:
 3.5(1)(2)

3.5 Implicit Differentiation (continued)

Given any equation of the form:

F(x,y) = 0,

we think of y as an *implicit* function of x

F(x,y(x)) = 0

and differentiate directly (correctly using the chain rule as we go) to find dy/dx.

Entry Task: Find the equation for the tangent line to

$$y^2 = x$$

at (x, y) = (4, -2).

Find dy/dx.

$2.xe^{y} + \tan(x) + \sin(y) = 1$

 $1.x^4y + y^3 = x$

Old Midterm Question:

Consider the curve implicitly defined by $(x^3 - y^2)^2 + e^y = 4.$

Find the (x, y) coordinates of the point A shown (highest point on the curve).

Inverse Functions: We write inverse functions as $y = f^{-1}(x)$ which is equivalent to f(y) = x.

We can implicitly differentiate

$$\frac{d}{dx}[f(y) = x] \Rightarrow f'(y)\frac{dy}{dx} = 1$$
$$\Rightarrow \frac{dy}{dx} = \frac{1}{f'(y)}$$

Examples: Find dy/dx

1.
$$y = \sqrt{x}$$

2.
$$y = \sin^{-1}(x)$$

$$3.y = \tan^{-1}(x)$$

• *Note*: The formulas all assume the principal domains as defined in our textbook.

Now you can use these *shortcuts*.

Exercise: Find dy/dx

 $y = \tan^{-1}(e^{3x})$

3.6 Derivatives of Logarithms and Logarithmic Differentiation

Recall your logarithm facts: $1. y = \ln(x) \iff e^y = x$

2.
$$e^{\ln(x)} = x$$
 and $\ln(e^y) = y$

$$3.\ln(ab) = \ln(a) + \ln(b)$$
$$\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$$
$$\ln(x^n) = n\ln(x)$$

4.
$$y = \log_a(x) \leftrightarrow a^y = x$$

(so $\ln(x) = \log_e(x)$)

Quick test of basic understanding

Solve $3^x + 1 = 11$

Find the derivative of $y = \ln(x)$

Find the derivative of $y = \log_a(x)$

Power functions:

$$\frac{d}{dx}\left[\left(g(x)\right)^{n}\right] = n\left(g(x)\right)^{n-1}g'(x)$$

Example:

$$\frac{d}{dx}[(x^3+2x)^{10}] =$$

Exponential functions:

$$\frac{d}{dx} \left[e^{g(x)} \right] = e^{g(x)} g'(x)$$
$$\frac{d}{dx} \left[a^{g(x)} \right] = a^{g(x)} \ln(a) g'(x)$$

Examples:

$$\frac{d}{dx} \left[e^{(x^4 - 5x)} \right] =$$
$$\frac{d}{dx} \left[7^{(x^4 - 5x)} \right] =$$

What if the variable *x* is in BOTH the base and exponent?

Example: $y = (3x + 1)^x$

Answer: *Logarithmic Differentiation Step 1*: Take log of both sides *Step 2*: Differentiate implicitly *Step 3*: Solve for y'.