Math 120 Exam 2 Review: Chapters 8 through 16

This review is not all inclusive. You are expected to understand concepts from lecture and be able to complete problems similar to those from the homework.

1. Chapters 8 and 9 — Composition and Inverses

- Be able to compute compositions such as f(g(x)), g(f(x)), and f(f(x)).
- A function has an inverse only if it is one-to-one (passes the Horizontal Line Test).
- To find an inverse:

$$y = f(x)$$
 swap x and y and solve for y.

- The domain of f^{-1} is the range of f, and the range of f^{-1} is the domain of f.
- A function and its inverse are reflections of each other across the line y = x, when drawn on the same coordinate plane.
- \bullet Be comfortable solving for x when equations involve:
 - (a) Linear expressions
 - (b) Rational expressions
 - (c) Quadratics
 - (d) Square roots or other fractional powers
- Example of restricting domain:

Consider $f(x) = (x-2)^2 + 1$. This function is not invertible on all real x because it fails the Horizontal Line Test. If we restrict to $x \le 2$, then:

$$y = (x-2)^2 + 1 \implies (x-2)^2 = y - 1 \implies x - 2 = \pm \sqrt{y-1} \implies x = 2 \pm \sqrt{y-1}$$

Because we are restricting to $x \leq 2$, we choose the branch that gives x-values less than 2:

$$f^{-1}(y) = 2 - \sqrt{y-1}$$
, Domain: $y \ge 1$.

2. Chapters 10-12 — Exponential Models and Logarithms

• Exponential model:

$$y = ab^t$$
 or equivalently $y = ae^{kt}$,

where $b = e^k$ and $k = \ln(b)$.

- You should be very comfortable finding an exponential model from given information. Write out the model, plug in the numbers, then combine and solve.
- Understand how to use doubling, tripling, or halving times to find b.
- Note that growth of 3.2% per year means b = 1.032. Example:

$$y = 100(1.032)^t.$$

- To solve exponential equations:
 - (a) Isolate the exponential.
 - (b) Take natural logs of both sides.
 - (c) Use $\ln(a^b) = b \ln(a)$ to solve for the variable.
- A few other key facts:

$$-\ln(a^b) = b\ln(a)$$

$$-\ln(ab) = \ln(a) + \ln(b)$$

$$-\log_b(y) = x$$
 is the same as $y = b^x$

$$-\log_b(x) = \frac{\ln(x)}{\ln(b)}$$

3. Chapter 13 — Transforming Functions

- Movements:
 - (a) Reflect across y-axis: replace x with -x.
 - (b) Reflect across x-axis: replace y with -y.
 - (c) Shift horizontally by h: replace x with x h.
 - (d) Shift vertically by k: replace y with y k.
 - (e) Horizontal scale by c: replace x with cx.
 - (f) Vertical scale by d: replace y with dy.
- Example: y = 2f(3x 1) + 4 Move outside stuff to y side: $\frac{y 4}{2} = f(3x 1)$. To find the new x-coordinates: add 1 then divide by 3 (we are *undoing* the inside changes). To find new y-coordinates: multiply by 2, then add 4.
- Example of point movement: If (2,3) is on the original y=f(x), then:

$$x: 2 \mapsto \frac{2+1}{3} = 1, \quad y: 3 \mapsto 2(3) + 4 = 10.$$

So (2,3) becomes (1,10) on the new graph.

4. Chapter 14 — Linear-to-Linear Rational Models

• Standard form:

$$y = \frac{ax + b}{x + c}.$$

- Vertical asymptote: x = -c.
- Horizontal asymptote: y = a (ratio of leading coefficients).
- Once asymptotes are drawn, the graph resembles either 1/x or -1/x.
- Be comfortable solving for a, b, and c given data.
- When solving equations, clear the denominator first.

5. Chapter 15 — Radians, Arc Length, and Wedge Area

- 2π radians = 360° .
- If θ is in radians:

Arc Length
$$= \theta r$$
, Wedge Area $= \frac{1}{2}\theta r^2$.

• Always check whether θ is in radians before using formulas.

6. Chapter 16 — Circular Motion and Belt/Wheel Systems

- Angular speed: $\omega = \frac{\theta}{t}$.
- Linear speed: $v = \frac{s}{t}$.
- Key relationships (only if θ is in radians):

$$s = \theta r, \qquad \theta = \omega t, \qquad v = \omega r.$$

- Convert revolutions to radians: 1 rev = 2π radians.
- Distance per revolution (circumference) = $2\pi r$.
- In belt and wheel systems,
 - same axle means same angular speed and
 - connected by a belt means same linear speed.
- Use your table method once units are consistent.