Chapters 6: Graphs and Multipart Functions

This document provides a quick summary and review for Chapters 6.

Key Concepts

- Understand and describe when a graph is positive, negative, increasing, or decreasing.
- Label graphs using function notation and interpret what f(x) represents at specific points.
- Work with piecewise-defined functions, such as

$$|x| = \begin{cases} x, & x \ge 0, \\ -x, & x < 0. \end{cases}$$

• Apply piecewise reasoning to geometric or modeling problems.

Mechanical Examples of Multipart Functions

Example 1: Solve for a specific function value

Let

$$f(x) = \begin{cases} x^2 + 2, & x \ge 2, \\ 2x - 1, & x < 2. \end{cases}$$

Find all x such that f(x) = 11.

Solution:

- Case 1: $x \ge 2$ $x^2 + 2 = 11 \implies x^2 = 9 \implies x = 3$ (valid since $x \ge 2$).
- Case 2: x < 2 $2x 1 = 11 \implies x = 6$ (invalid since $x \nleq 2$).

Answer: x = 3.

Example 2: Solve with an absolute value function

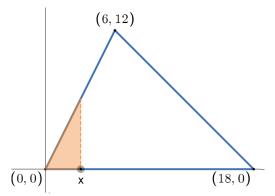
Let

$$g(x) = 4x - 5 + |x + 7|.$$

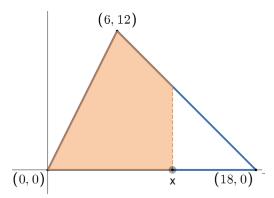
Find all a such that g(a) = 3a + 6.

Solution:

- Case 1: $x + 7 \ge 0$ $(x \ge -7)$ |x + 7| = x + 7, so g(x) = 4x 5 + (x + 7) = 5x + 2. $5a + 2 = 3a + 6 \implies 2a = 4 \implies a = 2$ (valid).
- Case 2: x + 7 < 0 (x < -7) |x + 7| = -x 7, so g(x) = 4x 5 x 7 = 3x 12. 3a 12 = 3a + 6 gives -12 = 6 so no solution.


Answer: a = 2.

Observation:


- Always split work by the region of definition.
- Check each answer against its case's domain.

Example: Cake Cutting

A triangular cake viewed from above has base 18 in and height 12 in. Coordinates: left corner (0,0), right corner (18,0), apex (6,12). Alice cuts vertically at x, taking the left portion.

Case 1: $0 \le x \le 6$ — Left side of the triangle

Case 2: $6 \le x \le 18$ — Right side of the triangle

Solution:

Step 1: Equation for top edge.

- Left edge from (0,0) to (6,12): slope $m=\frac{12-0}{6-0}=2$, so the equation is y=2x.
- Right edge from (6,12) to (18,0): slope $m=\frac{0-12}{18-6}=-1$, so the equation is y=-x+18.

Step 2: Height of the slice at cut x. As Alice moves the knife from left to right, the top height changes depending on which edge she intersects:

$$y(x) = \begin{cases} 2x, & 0 \le x \le 6, \\ -x + 18, & 6 \le x \le 18. \end{cases}$$

Step 3: Area of shaded portion.

• Case 1: For $0 \le x \le 6$, the region is a triangle and area is $\frac{1}{2}$ (base)(height), so

$$A(x) = \frac{1}{2}x(2x) = x^2.$$

• Case 2: For $6 \le x \le 18$, find the total area of the cake and subtract the small right triangle's area:

$$A(x) = \frac{1}{2}(18)(12) - \frac{1}{2}(18 - x)(-x + 18) = 108 - \frac{1}{2}(18 - x)^{2}.$$

Thus,

$$A(x) = \begin{cases} x^2, & 0 \le x \le 6, \\ 108 - \frac{1}{2}(18 - x)^2, & 6 \le x \le 18. \end{cases}$$

Observations:

- Break geometry problems into straight-line equations first.
- Clearly define variables: here x = base coordinate, y(x) = height at the cut, A(x) = area to the left.