Chapters 5: Functions and Functional Notation

This document provides a quick summary and review for Chapters 5.

Key Concepts

- Understand the definition of a function as well and the meaning of the domain and range.
- Understand the vertical line test.
- Be able to use functional notation: f(2x), f(x+h), f(x+h) f(x), etc.
- Understand how to use the difference quotient:

$$\frac{f(x+h)-f(x)}{h}.$$

Example: Difference Quotient Practice

For each function, compute and simplify $\frac{f(x+h)-f(x)}{h}$.

Calculus Note: This expression is the slope of the secant line from x to x + h. As $h \to 0$, the secant approaches the tangent line. Simplifying the difference quotient and then letting h = 0 gives the *derivative*, the slope of the tangent line at x. Mastering this algebra is essential, since it is the foundation of calculus. Here is a video of me using this definition to model the velocity of a tennis ball: Watch video

Example 1: If
$$f(x) = 4x + 3$$
, then $\frac{f(x+h) - f(x)}{h} = \frac{[4(x+h) + 3] - [4x + 3]}{h}$.

• Solution Expanding and simplifying

$$\begin{array}{cccc} \frac{[4(x+h)+3]-[4x+3]}{h} & = \frac{4x+4h+3-(4x+3)}{h} & \text{distribute the 4} \\ & = \frac{4x+4h+3-4x-3}{h} & \text{distribute the negative} \\ & = \frac{4h}{h} & \text{cancel in the numerator} \\ & = 4 & \text{cancel } h \\ \end{array}$$

• Note how the slope of the 'tangent' line is 4 which makes since as this was just a line with slope 4.

Example 2: If
$$f(x) = 4x^2 - 3$$
, then $\frac{f(x+h) - f(x)}{h} = \frac{[4(x+h)^2 - 3] - [4x^2 - 3]}{h}$.

• Solution Expanding and simplifying

$$\frac{[4(x+h)^2-3]-[4x^2-3]}{h} = \frac{[4(x^2+2xh+h^2)-3]-[4x^2-3]}{h} \text{ expand the square}$$

$$= \frac{[4x^2+8xh+4h^2-3]-[4x^2-3]}{h} \text{ distribute the 4}$$

$$= \frac{4x^2+8xh+4h^2-3-4x^2+3}{h} \text{ distribute the negative}$$

$$= \frac{8xh+4h^2}{h} \text{ cancel in the numerator}$$

$$= \frac{8xh}{h} + \frac{4h^2}{h} \text{ distribute}$$

$$= 8x+4h \text{ cancel}$$

• In calculus, we will say the slope of the tangent line is f'(x) = 8x, which is what we get when we plug in h = 0.

Example 3: If $f(x) = 2x^2 - 3x$, then 'YOU TRY'. Solution on next page.

Example 4: If $f(x) = \frac{1}{x}$, then 'YOU TRY'. Solution on next page.

Example 5: If $f(x) = \sqrt{x}$, then 'YOU TRY'. Solution on next page.

Example 3: If
$$f(x) = 2x^2 - 3x$$
, then $\frac{f(x+h) - f(x)}{h} = \frac{[2(x+h)^2 - 3(x+h)] - [2x^2 - 3x]}{h}$.

• Solution Expanding and simplifying

$$\frac{[2(x+h)^2-3(x+h)]-[2x^2-3x]}{h} = \frac{[2(x^2+2xh+h^2)-3x-3h]-[2x^2-3x]}{h} = \exp \text{and squares, distribute } -3$$

$$= \frac{[2x^2+4xh+2h^2-3x-3h]-[2x^2-3x]}{h} = \frac{2x^2+4xh+2h^2-3x-3h-2x^2+3x}{h} = \frac{4xh+2h^2-3h}{h} = \frac{4xh+2h^2-3h}{h} = \frac{h(4x+2h-3)}{h} = 4x+2h-3 = 4x+2h-3$$
 cancel in the numerator

• In calculus, we will say the slope of the tangent line is f'(x) = 4x - 3, which is what we get when we plug in h = 0.

Example 4: If
$$f(x) = \frac{1}{x}$$
, then $\frac{f(x+h) - f(x)}{h} = \frac{\frac{1}{x+h} - \frac{1}{x}}{h}$.

• Solution Expanding and simplifying

$$\frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \frac{\frac{x - (x+h)}{x(x+h)}}{\frac{h}{2h}} \quad \text{combine into single fraction}$$

$$= \frac{\frac{x}{h} - \frac{h}{h}}{\frac{h}{h} - \frac{h}{h}} \quad \text{simplify numerator}$$

$$= \frac{h}{h} \cdot \frac{x(x+h)}{x(x+h)} \quad \text{rewrite denominator}$$

$$= \frac{1}{x(x+h)} \quad \text{cancel } h$$

• In calculus, we will say the slope of the tangent line is $f'(x) = \frac{-1}{x^2}$, which is what we get when we plug in h = 0.

Example 5: If
$$f(x) = \sqrt{x}$$
, then $\frac{f(x+h) - f(x)}{h} = \frac{\sqrt{x+h} - \sqrt{x}}{h}$.

• Solution Expanding and simplifying

$$\frac{\sqrt{x+h}-\sqrt{x}}{h} = \frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})} \quad \text{multiply by conjugate}$$

$$= \frac{(x+h)-x}{h(\sqrt{x+h}+\sqrt{x})} \quad \text{difference of squares}$$

$$= \frac{h}{h(\sqrt{x+h}+\sqrt{x})} \quad \text{cancel in numerator}$$

$$= \frac{1}{\sqrt{x+h}+\sqrt{x}} \quad \text{cancel } h$$

• In calculus, we will say the slope of the tangent line is $f'(x) = \frac{1}{2\sqrt{x}}$, which is what we get when we plug in h = 0.

Observation: After simplification, plugging in h = 0 is safe. Again in the second week of calculus this becomes the definition of the derivative. And we use this to build a collection of shortcuts that you use for the rest of the calculus courses (and avoids having to do this algebra every time).